CSKQS: A Query System for
Collective Spatial Keyword Queries

Harry Kai-Ho Chan
Information School, University of Sheffield, United Kingdom
h.k.chan @sheffield.ac.uk

Abstract—With the proliferation of location-based services,
geo-textual data is becoming ubiquitous. Objects involved in
geo-textual data include geospatial locations, textual descriptions
or keywords, and often numerical attributes (e.g., expenses and
users’ ratings for points of interest). One popular spatial keyword
queries on geo-textual data is the Collective Spatial Keyword
Query (CoSKQ), which is to find, for a query consisting of
a query location and some query keywords, a set of multiple
objects such that the objects in the set collectively cover all the
query keywords, and the object set is of good quality according
to some criterion. In this work, we demonstrate a Collective
Spatial Keyword Queries System (CSKQS) that supports both
the conventional CoSKQ, and a variant called Cost-Aware and
Distance-Constrained CoSKQ. CSKQS adopts the client/server
system architecture, enabling users to access it through a web
browser. The client side interface allows users to specify their
queries and view the results, while the server side handles query
processing and stores the data. CSKQS also offers an interactive
map visualization, providing an intuitive view of the spatial
relationship between the result object set and query location.

I. INTRODUCTION

Nowadays, geo-textual data which refers to data with both
spatial and textual information is ubiquitous. Examples of geo-
textual data include points-of-interests (POIs) in the physical
world (e.g., restaurants, shops and hotels), geo-tagged web
objects (e.g., webpages and photos at Flicker), and geo-social
networking data (e.g., users of FourSquare have their check-in
histories which are spatial and also have their profiles which
are textual). Many of these geo-textual objects also come with
additional numerical attributes. For example, a restaurant is
usually associated with some expense attribute (e.g., in Yelp,
this information is shown by the number of “$” symbols).

Many types of spatial keyword queries have been proposed
on geo-textual data. Among them, one prominent type is to
search a set of (geo-textual) objects wrt a query consisting of
a query location (e.g., the user’s current location) and some
query keywords expressing the targets that the user wants to
search such that the objects have their textual information
matching the query keywords and their locations close to the
query location. For example, a tourist visiting a city wants to
find several POIs for sight-seeing, shopping and dining, and
all these POlIs are close to the hotel. In this case, the tourist
can set the hotel as the query location, and the query keywords
to be “attraction”, “shopping”, and “restaurant”.

This query type was captured by the Collective Spatial
Keyword Query (CoSKQ) [2]], [Ol, [1], [S], which is to search

for a set of multiple objects that collectively cover all query
keywords and are desirable to the user based on some criterion.
We call an object set G a feasible set if its covers all query
keywords. For a given query, there are usually many feasible
sets - each combination of objects covering different query
keywords would be a feasible set. Therefore, a key question
that needs to be answered is that, among all possible feasible
sets, which one should be returned, i.e., what criterion should
be used for picking a feasible set? Existing studies define the
criterion either based on solely the geospatial aspects of the
objects [, 2], [S], [9], or by a variant that considers both
the geospatial aspects and attribute aspects [3], [4].

In this work, we demonstrate a Collective Spatial Keyword
Queries System (CSKQS) that supports the two types of
CoSKQs: (1) CSKQS supports the conventional CoSKQ [5]],
which is to find the feasible set, i.e., the object set covers
all query keywords g.», which has the smallest distance wrt
the query location ¢.)\, where the distance of a set of objects
wrt the query location is defined based on the distances
between the objects and the query location and also those
among the objects; (2) CSKQS also supports the Cost-Aware
and Distance-Constrained CoSKQ (CD-CoSKQ) [3], which
aims to find an object set with the smallest cost subject to
a budget constraint q.B on the distance. The cost is based
on the attribute aspect of the objects and the distance on the
geospatial aspect. CD-CoSKQ provides users a finer grained
interface to express their preferences on both the geospatial
aspect and the attribute aspect of the geo-textual objects.

Many systems have been developed to support different
types of spatial keyword queries. For example, IndoorViz [7]]
addresses the indoor spatial keyword queries, and TASKS [10]]
supports the error-tolerant spatial keyword queries on road
network. These systems, however, only support queries that
return a single spatial object per result and are therefore
not applicable to CoSKQ. ExampleSearcher [11] answers the
keyword searches and spatial examplar queries, which return
object sets as results. It uses an example-based search, and the
output is based on the similarity with the example. Thus, it
can not be used to capture the distance function employed in
CoSKQ or the cost function utilized in CD-CoSKQ.

To the best of our knowledge, CSKQS is the first system
designed to support collective spatial keyword queries. The
main features of CSKQS are summarized as follows. First,
it provides a user interface allowing users to query, set
parameters and view results. Second, it adopts a client/server

architecture, enabling users to access the system from a
browser. Third, it offers an interactive map visualization to
show the spatial relationship between the result object set and
query location in an intuitive way.

The rest of this demonstration proposal is organized as fol-
lows. Section |lI] introduces the problem definition of CoSKQs.
Section presents the architecture and design of CSKQS.
Finally, Section shows the user interface and details the
demonstration scenarios.

II. PROBLEM DEFINITION

In this section we formally introduce the problem definition
of CoSKQ and CD-CoSKQ.

Let O be a set of geo-textual objects. Each object 0 € O is
associated with a location denoted by 0., a set of keywords
denoted by 0.1, and some attributes which we convert to
a form of cost denoted by o.w such that a lower cost is
preferred. Given two objects o and o', we denote by d(o,0')
the Euclidean distance between 0.\ and o' .\.

The conventional CoSKQ is defined as follows.

Problem 1 (CoSKQ [5l]): Given a query g which consists
of a query location g.\ and a set of query keywords g.1, the
CoSKQ problem is to find a set G € O of objects such that
(1) G covers q.9 (i.e., G is a feasible set), and (2) the distance
of G wrt g, denoted by dist(G, q), is minimized. 0

Distance Functions. Given a query ¢ and an object set GG, we
consider the following six distance functions in this paper.

diStMawSum(G7Q) = maXd(OaQ)+ max d(01702)
0eG 01,02€G
distpia(G,q) = max d(oy,02)
01,02€GU{q}
dists.m(G,q) =) d(o,q)
0eG
distsumrras(Goq) =) d(o,q)+ max_d(oy,0,)
oce 01,02€G

diStMinMar(Gv Q) = min d(07 Q) + max d(olv 02)
0eG eG

01,02

distarinman2(G,q) = max{mind(o,q), max d(o1,02)}
0eG eG

01,02

Note that the above distance function definitions are simplified,
with some tunable parameters omitted due to page limit. We
refer readers to the original papers [4] for the full list and
complete definitions.

Different distance functions can be used to capture different
needs. For example, distp;,.54m can fit with applications
such as tourists planning visits to multiple POIs, and concern
the farthest distance they have to travel from the hotel, as well
as the distance between POIs. On the other hand, dist s 0raz
is useful when the user want to reach their first stop quickly,
and explore other objects within a small region.

CSKQS also supports a variant of CoSKQ, called Cost-
Aware and Distance-Constrained Collective Spatial Keyword
Query, which is defined as follows.

Problem 2 (CD-CoSKQ [3)]): Given a query g which con-
sists of a query location g.\, a set of query keywords ¢.1, and

1 1
T 1 |
$ ' Query Parameters Query Map '
‘g | Specifying Setting Result Visualization |
A T W |

Request
R T Response |
éé Query Processor
o
Exact Appro Exact Appro
(Unified-E) (Unified-A) (CD-Exact) (CD-Appro)
CoSKQ CD-CoSKQ

Index: Augmented IR-tree

?

| POl location, keywords, cost |

Data Storage

Fig. 1. System architecture of CSKQS

a distance threshold ¢.B, the CD-CoSKQ problem is to find
a set G € O of objects such that (1) G covers q.1, (2) the
distance of G wrt ¢, denoted by dist(G,q), is at most q.B,
and (3) the cost of G, denoted by cost(G), is minimized.

Compared to the conventional CoSKQ that find the feasible
set with minimum dist(G, q), the CD-CoSKQ problem is to
find a feasible set G which has its distance dist(G, ¢) at most
a threshold B and its cost cost(G) as small as possible.

Cost Functions. We consider two cost functions cost(G).

cost praz(G) = max o.w
oeG

costgum(G) = Z o.w
0€G

The cost function cost ;.. (G) is suitable for cases where
costs represent levels of dissatisfaction, such as user ratings,
with the highest cost reflect the maximum acceptable level of
the dissatisfaction for the object set. In contrast, cost g, (G)
captures the total costs of the objects in GG, which is suitable
for cases when the costs represent some form of expense, such
as time or money.

ITII. CSKQS DESIGN

In this section, we present the design of CSKQS. We
first give an overview of the system architecture. Then, we
introduce different components in the system.

A. System Architecture

Figure [T|shows the system architecture of CSKQS. It adopts
a front-end and back-end architecture. The front-end is a
user interface to (1) allowing users to input queries and set
parameters, then sending them to the back-end server, and (2)
receiving the results from the server and presenting them to
the users. The back-end consists of two main layers, namely
the Query Processor and Data Storage. The Query Processor

CSKQS - Collective Spatial Keyword Queries System

Collective Spatial Keyword Query
50

by Result

Choose Query Type:
@® Conventional CoSKQ
O Cost-aware and Distance-constrained CoSKQ

Query Type: CoSKQ
Query Location: (100.00, 50.00)
Query Keywords: 12,19,21,140

48w
Query Location (x,y):

z§
.
46

Result Object Set: 2492, 3071, 24101
distyaxsum = 19.2850

Parameter Setting 42 &o o

Result Detail

Distance Function:
® distyaxsum O distpia

O distyinmax O distminmaxz

2492 (96.15, 47.92) 12,5

3071 (98.50, 42.77) 1, 140, 455

24101 (102.90, 44.51) 5,99,21,19,0

= = .
O distgym O distsummax 40 N
Algorithm:
©® Exact Algorithm
O Approximation Algorithm 38

F
E=IEE 0 92 91 %

98 100 102 104

Fig. 2. User Interface of CSKQS

receives the input queries from the front-end, and retrieve the
relevant data from the Data Storage.

B. Query Processor

The query processor is designed to handle both the CoSKQ
and CD-CoSKQ. The corresponding exact or approximation
algorithm is invoked based on the user’s input. The algorithm
utilizes the index to retrieve the data, and returns the solution
to the client-side. It is worth noting that the two problems
requires different search procedures and algorithmic designs.
Thus, the algorithms developed for answering CoSKQ cannot
be applied to CD-CoSKQ, and vice versa.

« For CoSKQ, the Unified-E and Unified-A [4] are used as
the exact and approximation algorithms, respectively.

¢ For CD-CoSKQ, the CD-Exact and CD-Appro [3] are
used as the exact and approximation algorithms, respec-
tively. CD-Appro is an («, 3)-approximation algorithm,
where the returned object set has it cost at most « times
from the minimum cost of any feasible set satisfying the
distance budget, and its distance within a factor of 8 from
the distance budget.

The approximation ratios of both Unified-A and CD-
Appro depend on the specific distance function and cost
function used. For example, when distprinnras 1S used,
Unified-A is a 2-approximation algorithm. When cost yrq.(+)
and distyrapsum(c) are used, CD-Appro is a (1,1.375)-
approximation algorithm.

C. Indexing

To allow fast retrieval of spatial objects, we adopt the
IR-tree [6] for keyword-based nearest neighbour queries and
range queries, which are procedures invoked in the search
algorithms. The conventional IR tree augments an R-tree by
storing at each node an inverted list which maintains for each
keyword those children nodes which store an object containing
the keyword. To better suit the algorithms, we augment the
standard IR-tree by including some extra cost information in

each inverted list which will be used for pruning. Specifically,
in each inverted list of a keyword, we maintain not only the
children nodes which store an object containing the keyword
but also the minimum cost of these objects that are stored
in the node and contain the keyword. Thus, the inverted
lists not only store the nodes in the sub-tree that contain
the corresponding keywords, but also an additional value, the
minimum weight of the objects under each node.

IV. DEMONSTRATION OF CSKQS

We introduce the user interface of CSKQS and then detail
the demonstration scenario in_this section. In addition, an
introduction video is available l The user interface and the
back-end are implemented in Python and C++, respectively.

We extracted data from Yelp Open Datase w for this demon-
stration. The dataset contains real-world POIs (i.e., objects),
each has a spatial location, a rating on a 5-star scale with 0.5-
star increments, and belongs to a set of business categories
(e.g., Pubs, Burgers). For each object, the set of categories are
used as its keywords, and the rating is converted to the range
of [1,10], where lower is better. Note that we use the keyword
ids, instead of textual keywords, for demonstration purpose.

A. User Interface

Figure@] shows the user interface of CSKQS, which contains

five components as follows.

1) Query Inputs (Top-left). The users can input the query
type, query location and query keywords. The users
need to choose the query type to be either CoSKQ
or CD-CoSKQ. For the query location, users can input
(x,y), or get the location from the map directly. For the
query keywords, the users can input multiple keywords,
separated by comma.

2) Parameter Settings (Bottom-left). The users can customize
their query parameters by selecting the distance function

Thttps:/fyoutu.be/QtAYUGd92u8
2https://business.yelp.com/data/resources/open— dataset

https://youtu.be/QtAYUGd92u8
https://business.yelp.com/data/resources/open-dataset

3)

4)

5)

Parameter Setting

Distance Function:
© distyaxsum

O distyinmax

O distgym

O distp;,
O distyinmaxz
O distsumax

Distance Budget: Medium v

Cost Function:
@® costyay
O costgym

Algorithm:

@® Exact Algerithm
© Approximation Algorithm

e

Fig. 3. Parameter Settings for CD-CoSKQ

and the algorithm to be used. In case of CD-CoSKQ, the
users can also select the cost function and set the distance
budget, as shown in Figure 3] Inspired by [8]] that enforces
budget constraints on route search, CSKQS provides
five options {“Very Strict”, “Strict”, “Medium”, “Loose”,
“Very Loose” } for users to choose their distance budget.
It corresponds to n = {1.05,1.1,1.15,1.2, 1.25}, respec-
tively, where n is the multiple that the user can tolerance
compared to the result of the conventional CoSKQ. Users
can also choose to input a real value to be the distance
budget. These settings allow users to tailor queries to suit
their personal needs and preferences.

Interactive Map Visualization (Center). This component
enables users to interact with the map, performing opera-
tions like zooming in/out, panning to view different areas
that they are interested in. Initially, the map mainly shows
the objects’ spatial distribution, where the objects are
colored in blue. The users can look at the detail of each
object, including its id, precise location, and associated
keywords, by hovering the mouse cursor over the points.
Once the user submits a query, the map highlights the
query location in red color, and all the objects in the
returned object set G in green. It also shows the pairwise
lines connecting the objects in G’ and query location. By
hover over these lines, the user can view the correspond-
ing specific distance values, as shown in Figure [
Query Results (Top-right). This area displays the result
of the query. It lists the object IDs in the returned object
set GG, along with the distance function value dist(G),
and in the case of CD-CoSKQ, the cost function value
cost(@G) is also shown.

Result Details (Bottom-right). Finally, this area provides
the returned object set information in detail, including
each object’s id, location, and the associated keywords
listed in a table.

B. Demonstration Scenario

We show the following three steps for a user to configure
and submit a query, and view the results.

1)

Input Query. First, the user chooses the query type
from CoSKQ or CD-CoSKQ. The user then inputs the

2)

3

~

[1]
[2]
[3]

[4]
[5]
[6]
[7]

[8]
[9]

[10]

(1]

qeery

2492
query: (100.00, 50.00)

object 24101: (102.90, 44.51)
distance:6.2116

S o
| 0

Fig. 4. Hover text of the pairwise line

query location (x,y) in the input box, and specifies the
query keywords in the input box. Multiple keywords are
separated by comma.

Set Parameters. The user selects the distance func-
tion to be disty;azSums AiStpias AiStsums AiStsumMazs
distyrinMaz> OF diStyrinmaze. In case of CD-CoSKQ,
the user also specifies the cost function to be cost ., or
costgym, and the distance budget. The user then selects
to run either the exact or the approximation algorithm.
View Results. The user views the returned object set in
the result box, along with its distance function value,
and its cost function value in the case of CD-CoSKQ.
The user can browse the object details information in
the result detail table. The map visualizes the object set
result in green, and helps the user understand the spatial
relationship between the objects and query location. The
user can then use the interactive map to zoom in to the
region with object set, and move the mouse over the lines
to see the spatial relationship and distance between the
points. Users can easily see how the distance contributor
objects [4] contributes to the distance function value.

REFERENCES

X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi. Efficient
processing of spatial group keyword queries. TODS, 40(2):13, 2015.
X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword
querying. In SIGMOD, pages 373-384. ACM, 2011.

H. K.-H. Chan, S. Liu, C. Long, and R. C.-W. Wong. Cost-aware
and distance-constrained collective spatial keyword query. TKDE,
35(2):1324-1336, 2021.

H. K.-H. Chan, C. Long, and R. C.-W. Wong. Inherent-cost aware
collective spatial keyword queries. In SSTD, pages 357-375, 2017.

H. K.-H. Chan, C. Long, and R. C.-W. Wong. On generalizing collective
spatial keyword queries. TKDE, 30(9):1712-1726, 2018.

G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most
relevant spatial web objects. PVLDB, 2(1):337-348, 2009.

Y. Li, S. Yang, M. A. Cheema, Z. Shao, and X. Lin. Indoorviz: A
demonstration system for indoor spatial data management. In SIGMOD,
pages 2755-2759, 2021.

T. Liu, Z. Feng, H. Li, H. Lu, L. Shou, and J. Xu. Ikaros: An indoor
keyword-aware routing system. In /CDE, pages 3182-3185. IEEE, 2022.
C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective spatial
keyword queries:a distance owner-driven approach. In SIGMOD, pages
689-700. ACM, 2013.

C. Luo, Q. Liu, Y. Gao, L. Chen, Z. Wei, and C. Ge. Task: An efficient
framework for instant error-tolerant spatial keyword queries on road
networks. PVLDB, 16(10):2418-2430, 2023.

J. X. Yew, N. Liao, D. Mo, and S. Luo. Example searcher: A spatial
query system via example. In ICDE, pages 3635-3638. IEEE, 2023.

	Introduction
	Problem Definition
	CSKQS DESIGN
	System Architecture
	Query Processor
	Indexing

	Demonstration of CSKQS
	User Interface
	Demonstration Scenario

	References

