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APPENDIX A
EQUIVALENCE OF costSumMax2 AND costSum
We have the following lemma to show the functionality of
costSumMax2 and costSum are equivalent.
Lemma 4. Let S be an object set. costSumMax2(S) =
costSum(S).

Proof. Let (o1, o2) = argmaxo1,o2∈S d(o1, o2). We have

costSumMax2(S) = max{
∑
o∈S d(o, q), d(o1, o2)}. Note that

d(o1, q) + d(o2, q) ≥ d(o1, o2) by triangle inequality and∑
o∈S d(o, q) ≥ d(o1, q) + d(o2, q). Thus, costSumMax2(S) =∑
o∈S d(o, q) = costSum(S).

This lemma suggests that it is sufficient to consider one of
these two cost functions. In this paper, we focus the discussion on
costSum.

APPENDIX B
PROOF OF THEOREM 1
We first give the decision problem of CoSKQ. Given a set O of
spatial objects each o ∈ O associated with a location o.λ and a set
of keywords o.ψ, a query q consisting of a query location q.λ and
a set of query keywords q.ψ, and a real number C , the problem is
to determine whether there exists a set S of objects in O such that
S covers the query keywords and costunified(S) is at most C .

We then prove by transforming the 3-satisfiability (3-SAT)
problem which is known to be NP-Complete to the CoSKQ prob-
lem and showing the equivalence between two problems. The de-
scription of the 3-SAT problem is given as follows. Let U be a set
of literals {e1, e1, ..., en, en} where ei is the negation of ei. Given
an expression E = C1 ∧C2 ∧ ...∧Cm where Cj = xj ∨ yj ∨ zj
and xj , yj , zj ∈ U for 1 ≤ j ≤ m, the problem is to determine
whether there exists a truth assignment for ei for i ≤ i ≤ n such
that E is true.

Based on the value of parameter φ1, we use different transfor-
mations.
Case 1. φ1 = 1. We construct a setO of 2n objects as follows. For
each literal ei in U , we create an object oi inO, and for each literal
ei in U , we create an object o′i in O. In total, there are 2n objects
in O. We set the locations of the objects in O such that they are
all located at the same place i.e., for any o ∈ O, o.λ is identical.
Besides, for each object oi (1 ≤ i ≤ n), we set oi.ψ such that
oi.ψ includes a keyword ki corresponding to ei and a keyword k′j
corresponding to Cj if Cj involves ei for 1 ≤ j ≤ m. Similarly,
for each object o′i (1 ≤ i ≤ n), we set o′i.ψ such that o′i.ψ includes
the keyword k′i and all k′j’s with Cj involving ei for 1 ≤ j ≤ m.
We construct a query q by setting q.λ to be a location such that
d(o, q) = 1 for any object o ∈ O and q.ψ to be a set of m + n
keywords, {k1, k2, ..., kn, k′1, k′2, ..., k′m}. We set C to be n. The
above transformation process could be done in polynomial time.
Case 2. φ1 ∈ {∞,−∞}. We construct a set O of 2n objects
as follows. For each literal ei in U , we create an object oi in
O, and for each literal ei in U , we create an object o′i in O. In
total, there are 2n objects in O. For the locations of the objects,
consider a circle Cir with its center at q.λ (which is selected
arbitrarily) and its radius equal to 1. We set the locations of the
objects in O such that they are all located on the boundary of Cir
such that d(oi, o′i) = 2. Besides, for each object oi (1 ≤ i ≤ n),
we set oi.ψ such that oi.ψ includes a keyword ki corresponding
to ei and a keyword k′j corresponding to Cj if Cj involves ei

for 1 ≤ j ≤ m. Similarly, for each object o′i (1 ≤ i ≤ n),
we set o′i.ψ such that o′i.ψ includes the keyword k′i and all k′j’s
with Cj involving ei for 1 ≤ j ≤ m. We construct a query q
by setting q.λ arbitrarily and q.ψ to be a set of m+ n keywords,
{k1, k2, ..., kn, k′1, k′2, ..., k′m}. The above transformation process
could be done in polynomial time. We consider the following sub-
cases for setting C .
Case 2(a). φ2 = 1. We set C = 3− ε where ε is close to zero.
Case 2(b). φ2 =∞. We set C = 2− ε where ε is close to zero.

We show the equivalence between two problem instances as
follows. Suppose that the answer of the 3-SAT problem is “yes”,
i.e., there exists a truth assignment for the literals in U such that
E is correct. We denote the truth assignment by a set T of literals
which are true under the assignment. Note that T has exactly n
literals and ei and ei do not appear in T simultaneously for any
1 ≤ i ≤ n. Then, it could be verified that the set of objects each
corresponding to a literal in T covers q.ψ and the cost of the set
at most C , and thus the answer of the CoSKQ problem is also
“yes”. Suppose that the answer of the CoSKQ problem is “yes”.
Let S be the set of objects in O that covers q.ψ and has the cost
at most C . We know that object oi and o′i are not included in S
simultaneously. It could be verified that with the truth assignment
represented by the set of literals corresponding to the objects in
S, E is correct, and thus the answer of the 3-SAT problem is also
“yes”.

APPENDIX C
PRUNING BASED ON DOMINANCE

To improve the efficiency of the algorithm, we propose a pruning
strategy to prune the search space when α = 1 and φ1 = 1. Before
we give the strategy, we first introduce the concept of dominance.
Given a query q, two objects o1 and o2, we say o1 dominate o2 if
the following two conditions are satisfied. (1) d(o1, q) < d(o2, q),
and (2) all keywords in q.ψ that are covered by o2 can be covered
by o1, (i.e. q.ψ ∩ o1.ψ ⊇ q.ψ ∩ o2.ψ). A dominant object is
defined to be an object that is not dominated by any other objects.
Then we have the following lemma to prune the objects that are
not dominant objects.
Lemma 5. When α = 1 and φ1 = 1, all objects in the optimal

solution S are dominant objects.

Proof: We prove this by contradiction. Let an object o ∈ S that
is not a dominant object. Then, there must exist an object o′ that
dominate o. Note that o′ also covers the query keywords covered
by o and is closer to q. We can construct a better solution S′ =
S \ {o} ∪ {o′}, which contradicts the fact that S is the optimal
solution.

Based on this lemma, it is sufficient for the algorithm to con-
sider the dominant objects only when enumerating the object sets.
Specifically, whenever the algorithm performs a range query, it
discards the objects that are being dominated and proceeds with
the dominant objects.

APPENDIX D
BETTER IMPLEMENTATION BASED ON INFORMATION
RE-USE

To implement the Unified-A algorithm efficiently, we have the fol-
lowing computation strategies. First, when the algorithm finding
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Fig. 18: Effect of |q.ψ| on costMinMax (GN)
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Fig. 19: Effect of |q.ψ| on costMinMax (Web)

the set of all relevant objects in Ro (line 5 in Algorithm 4), instead
of issuing a range query in each iteration, it re-uses the information
from the previous iteration by maintaining the region Ro dynam-
ically. Specifically, consider one iteration. The algorithm finds a
feasible set that has an object o as a key query-object distance
contributor in the region Ro. After it finishes the current iteration,
it adds o into Ro (when φ1 ∈ {1,∞}), or removes o from Ro
(when φ1 = −∞).

Second, when the algorithm performs the iterative process
(lines 8-14 in Algorithm 4), instead of searching for the object with
minimum ratio (distance) from O′ in each iteration, it maintains a
heap structure for storing the objects. Specifically, when φ1 = 1,
the key of the objects in the heap are the ratios, and the heap is up-
dated after each object is picked. When φ1 ∈ {∞,−∞}, the key
of the objects in the heap are the distances, and in each iteration
the algorithm picks the relevant object with the smallest distance.

APPENDIX E
EXPERIMENTAL RESULTS ON THE DATASETS GN
AND WEB

In the following, we present the experimental results on the
datasets GN and Web of varying |q.ψ|. Following the existing
studies [3], [17], we vary the number of query keywords (i.e.,
|q.ψ|) from {3, 6, 9, 12, 15}.
(1) costMinMax. The results for costMinMax on the datasets
GN and Web are shown in Figure 18 and Figure 19, respectively,
which are similar to that on the dataset Hotel. The result of running
time of Cao-E1 for |q.ψ| = 15 is not shown in Figure 19 simply
because it ran for more than 10 hours (this applies for all the
following results).

(2) costMinMax2. The results for costMinMax2 on the datasets
GN and Web are shown in Figure 20 and Figure 21, respectively,
which are similar to those for costMinMax.

(3) costSum. The results for costSum on the datasets GN and Web
are shown in Figure 22 and Figure 23, respectively. According
to the results, Unified-E runs slower than Cao-E2 but still within
a reasonable time (e.g. within 10 seconds on the largest dataset
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Fig. 20: Effect of |q.ψ| on costMinMax2 (GN)
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Fig. 21: Effect of |q.ψ| on costMinMax2 (Web)
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Fig. 22: Effect of |q.ψ| on costSum (GN)
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Fig. 23: Effect of |q.ψ| on costSum (Web)

Web). Besides, Unified-A has a very similar running time as Cao-
A3, while Unified-A can always obtain an approximation ratios of
1.

(4) costSumMax. The results for costSumMax on the datasets
GN and Web are shown in Figure 24 and Figure 25, respectively,
which are similar to that on the dataset Hotel.

(5) costMaxMax. The results for costMaxMax on the datasets
GN and Web are shown in Figure 26 and Figure 27, respectively,
which are similar to that on the dataset Hotel.

(6) costMaxMax2. The results for costMaxMax2 on the datasets
GN and Web are shown in Figure 28 and Figure 29, respectively,
which are similar to that on the dataset Hotel.

(7) costMax. The results for costMax on the datasets GN and
Web are shown in Figure 30, which is similar to that on the dataset
Hotel. According to the results, both Unified-E and Unified-A run
very fast, e.g. they ran less than 6 ms for all settings of |q.ψ|.
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Fig. 24: Effect of |q.ψ| on costSumMax (GN)
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Fig. 25: Effect of |q.ψ| on costSumMax (Web)
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Fig. 26: Effect of |q.ψ| on costMaxMax (GN)
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Fig. 27: Effect of |q.ψ| on costMaxMax (Web)

APPENDIX F
SCALABILITY TEST

(2) costMinMax2. The results for costMinMax2 are shown in
Figure 31. According to Figure 31(a), Unified-E is faster and more
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Fig. 28: Effect of |q.ψ| on costMaxMax2 (GN)
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Fig. 29: Effect of |q.ψ| on costMaxMax2 (Web)
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Fig. 30: Effect of |q.ψ| on costMax

scalable than Cao-E1, e.g., on a dataset with 6M objects, Unified-
E ran for a couple of seconds while Cao-E1 ran for more than 10
hours. Besides, similar to the case of costMinMax, Unified-A runs
slightly slower than Cao-A1, but gives much better approximation
ratio, e.g. the median of approximation ratios of Unified-A are 1
on all settings while that of Cao-A1 are larger than 1.

(3) costSum. The results for costSum are shown in Figure 32.
According to Figure 32(a), Unified-E is very scalable when the
number of objects is large, e.g., it ran slightly longer than 1
second on a dataset with 10M objects. Besides, we noticed that
Cao-E2 has a very good performance and it even runs as fast as
the approximation algorithms. The reason could be as follows.
With the number of objects grows, the number of relevant objects
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Fig. 31: Scalability test on costMinMax2
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Fig. 32: Scalability test on costSum

becomes large. Both approximate algorithms have to re-compute
the ratio for the remaining nodes in the heap and re-organize the
heap after picking each object, whose cost becomes expensive
when the number of relevant objects is large. In contrast, Cao-E2
maintains a heap structure though, it does not have to re-examine
the nodes after processing a node. Unified-A has similar running
times as Cao-A3 but gives better approximation ratios than Cao-A3
(Figure 32(b)). Specifically, Unified-A can achieve near-to-optimal
approximation ratios on all setting while Cao-A3 has its largest
approximation ratios up to 1.279.

(4) costSumMax. Same as the experiments of varying |o.ψ| for
costSumMax, we used the setting of |q.ψ| = 8 for the scalabil-
ity test experiments for costSumMax particularly. The results for
costSumMax are shown in Figure 33. According to Figure 33(a),
Unified-E and Cao-E1 have similar running times and Unified-A
and Cao-A3 also have similar running times, but Unified-A gives
a better approximation ratio than Cao-A3 (Figure 33(b)).
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Fig. 33: Scalability test on costSumMax

(5) costMaxMax. The results for costMaxMax are shown in
Figure 34. According to Figure 34(a), Unified-E runs faster than
Long-E but slower than Cao-E1. According to Figure 34(b) and
(c), Unified-A runs faster than Long-A and Cao-A2 and slower than
Cao-A1, and Unified-A is one of the two algorithms (the other is
Long-A which runs slower than Unified-A by about one order of
magnitude) which give the best approximation ratios. Specifically,
the largest approximation ratios of Unified-A is only 1.134, which
is small, while that of Cao-A1 and Cao-A2 are 2.456 and 1.345,
respectively.
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Fig. 34: Scalability test on costMaxMax

(6) costMaxMax2. The results for costMaxMax2 are shown in
Figure 35. According to Figure 35(a), Unified-E runs similarly fast
as Long-E, and both of them run faster than Cao-E1. According
to Figure 35(b) and (c), Unified-A has similar running times with
Cao-A2, both of them run faster than Long-A and slower than
Cao-A1, and Unified-A is one of the two algorithms (the other
is Long-A which runs slower than Unified-A) which give the best
approximation ratios. Specifically, the largest approximation ratios
of Unified-A is only 1.109, which is small, while that of Cao-A1
and Cao-A2 are 1.928 and 1.524, respectively.
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Fig. 35: Scalability test on costMaxMax2
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(7) costMax. The results for costMax are shown in Figure 36.
According to the results, both Unified-E and Unified-A runs very
fast, e.g. they ran within 1 second on a dataset with 10M objects.
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