
Time-Constrained Indoor Keyword-aware Routing
Harry Kai-Ho Chan∗, Tiantian Liu†, Huan Li†, Hua Lu∗

∗Department of People and Technology, Roskilde University, Denmark
†Department of Computer Science, Aalborg University, Denmark

∗{kai-ho, luhua}@ruc.dk †{liutt, lihuan}@cs.aau.dk

ABSTRACT
With the increasingly available indoor positioning technologies,
indoor location-based services (LBS) are becoming popular. Among
indoor LBS applications, indoor routing is particularly in demand. In
the literature, there are several existing studies on indoor keyword-
aware routing queries, each considering different criteria when
finding an optimal route. However, none of these studies explicitly
constraint the time budget for the route. In this paper, we propose
a new problem formulation TIKRQ that considers the time needed
for a user to complete the route, in addition to other criteria such as
static cost and textual relevance. A set-based search algorithm and
effective pruning strategies are proposed for TIKRQ. We conduct
extensive experiments to verify the efficiency of our proposals.

CCS CONCEPTS
• Information systems→ Location based services.

KEYWORDS
indoor space, indoor query processing, keyword-aware, routing
ACM Reference Format:
Harry Kai-Ho Chan, Tiantian Liu, Huan Li, and Hua Lu. 2021. Time-
Constrained Indoor Keyword-aware Routing. In 17th International Sym-
posium on Spatial and Temporal Databases (SSTD ’21), August 23–25, 2021,
virtual, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3469830.3470895

1 INTRODUCTION
With recent developments in indoor positioning technologies and
the widespread use of smartphones, indoor location-based services
(LBS) [1] are becoming increasingly popular. Typical indoor LBS
related applications include finding interested indoor objects and
locations [13, 27, 30, 32, 33], indoor navigation and route plan-
ning [9, 16, 23–25], and indoor movement pattern mining [12, 14].
Among them, indoor route planning is particularly in demand,
which assists users in planning a route satisfying their preferences,
especially in an unfamiliar and large indoor environment like an
airport or a shopping mall.

Consider that Alice has just passed the security check in the
airport. As she has 90 minutes before the boarding time of the
flight, she wants to buy a coffee, some souvenirs and a new charging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSTD ’21, August 23–25, 2021, virtual, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8425-4/21/08. . . $15.00
https://doi.org/10.1145/3469830.3470895

cable. She can issue an indoor routing query from a source point
(her current location) to a target point (i.e., the boarding gate), and
specify the preferences by some keywords (e.g., coffee, souvenir, and
charging cable). The query should return a route that passes through
a shop that sells coffee, a souvenir shop, and a shop that sells
charging cables. Most importantly, she should be able to complete
the route within the 90-minute time constraint.

There are several existing studies on indoor keyword-aware
routing query [9, 23–25], each of which considers different criteria
when finding the result, including route distance, keyword rele-
vance, and static cost. These existing route planning queries focus
on minimizing the total length of the route that visits all requested
keywords. However, none of these studies considers the time con-
straint as a hard constraint. In this paper, we propose a new problem
formulation that is capable of taking all these criteria into account.

In practice, measuring the time needed to complete a route is
much more reasonable and comprehensive than focusing on the
route distance. First, instead of giving a concrete maximumwalking
distance (e.g., 500m), a user might feel more friendly to give the time
she/he is willing to walk (e.g., 5 minutes), especially in some time-
sensitive situations (e.g., as in our example, the user has to arrive
at the boarding gate before a particular boarding time). Second, the
distance metric overlooks the distances we travel by other means,
such as elevators in the shopping malls and Automated People
Mover (APM) in the airports. For example, the APM in Hong Kong
International Airport needs 10 minutes to arrive at the farthest
midfield concourse 1. While these travel means do not incur any
walking distance, the time needed on them should not be simply
neglected when planning the route. A recent work [9] converts a
time constraint into a distance constraint by multiplying the former
by a maximum indoor walking speed, which, however, cannot
handle these cases properly. Third, the waiting time of the shops
(e.g., queuing time for a restaurant, or checkout time needed for a
supermarket) should also be taken into account when returning a
route to the user.

Following a previous work [24], we also consider the static cost
of shops in this paper. The static cost of a shop could refer to the
average price of the products in the shop, or an estimated crowd-
edness of the shop. It could also be a composite cost of different
criteria, such as price, popularity, and rating.

In this paper, we propose a new problem formulation that
takes the route’s time needed into account, rather than the (walk-
ing) distance. Specifically, we formulate a time-constrained indoor
keyword-aware routing query (TIKRQ). A TIKRQ requires a source
point ps , a target point pt , a set QW of query keywords and a time
constraint ∆Max . It returns the top-k routes from ps to pt such that
each of their total time needed is less than ∆Max and their costs

1https://en.wikipedia.org/wiki/Hong_Kong_International_Airport_Automated_
People_Mover

74

https://doi.org/10.1145/3469830.3470895
https://doi.org/10.1145/3469830.3470895
https://doi.org/10.1145/3469830.3470895
https://en.wikipedia.org/wiki/Hong_Kong_International_Airport_Automated_People_Mover
https://en.wikipedia.org/wiki/Hong_Kong_International_Airport_Automated_People_Mover

SSTD ’21, August 23–25, 2021, virtual, USA H.K.-H. Chan et al.

v11
d11

d12

d13

d14

v12

v13 v15

v10

d10

apple

samsung

starbucks

microsoft

apple

elevator

hallway

partition

door

keyword

d15

s1 sd1

v14
subway

e1
d1

route R
route R'

staircase

1/F

pt

v21
d21

d22

d23
d24

v22

v23
v24

v20
d25

e1

v25

d2

citibank

coach

kate spade

T-Mobile

2/F

costa

s1 sd2

d26
ps

Partition Shop Static Cost Waiting Time (min.)

v11 apple 6 8
v25 costa 2 4
v14 starbucks 3 3
v24 T-mobile 8 5
· · · · · · · · · · · ·

Figure 1: Running Example

are the minimum compared to those of the others. In our setting,
the cost of a route captures the static cost and the textual relevance
of the indoor partitions with respect to QW .

Figure 1 shows our running example, which consists of a floor
plan of a shopping mall with two floors, and a table listing the
shops’ static costs and waiting time. Suppose a user will meet her
friends in 20 minutes. During her spare time, she wants to buy a
coffee and a charging cable for her phone. She then issues a query
with her current location as the source point ps (in v23 on 2/F), the
meeting location as the target point pt (in v10 on 1/F), two query
keywords coffee and charging cable, and a route’s time constraint
of 20 minutes. Both routes R and R′ are possible solutions of the
query. Route R visits costa (which is a coffee shop) and apple (which
sells charging cables), and uses the elevator e1 to reach 1/F from
2/F, while route R′ visits starbucks (which is another coffee shop)
and T-Mobile (which also sells charging cables) and goes from 2/F
to 1/F by the staircase s1. Suppose the total walking time of R and
R′ is 5 and 4 minutes, respectively, and the elevator takes 1 minute
to go from 2/F to 1/F. The total time needed to complete R and R′ is
5 + 1 + 8 + 4 = 18 minutes and 4 + 5 + 3 = 12 minutes, respectively.
In this case, both R and R′ can be completed within 20 minutes,
while R should be more desirable to the user, since R has a total
static cost of 2 + 6 = 8 which is much smaller than that 8 + 3 = 11
of R′.

In addition, we develop a concept of unique partition set to im-
prove the diversity of the top-k results. Also, we organize and
distinguish three types of indoor keywords to better capture the se-
mantics of the query keywords. To answer the TIKRQ, we propose
an algorithm based on a novel set-based search strategy to search
for the top-k routes. Efficient pruning techniques and computation
strategies are also designed to improve performance.

Compared to the existing studies [9, 23–25], our proposed TIKRQ
(1) provides the flexibility for users to specify the time constraint of
the routes, (2) is more comprehensive as it also considers the static
cost of the partitions, (3) better organizes the keyword in an indoor
setting by introducing an additional category-word, and (4) adopts

the concept of unique partition set to improve the diversity of the
top-k results.

The contributions of this work are summarized as follows.
• We formulate the time-constrained indoor keyword-aware rout-
ing query (TIKRQ) that takes the routes’ time needed into con-
sideration. We also propose a concept of unique partition set to
diversify the top-k routes. (Section 2)
• We propose a keyword organization for indoor keywords, and a
method to compute textual relevance for routes. (Section 3)
• We design a set-based search algorithm with effective pruning
techniques to resolve TIKRQ. (Section 4)
• We conduct extensive experiments and case studies to evaluate
the proposed techniques. (Section 5)

In addition, we review the related work in Section 6 and conclude
the paper in Section 7.

2 PROBLEM DEFINITION
2.1 Preliminaries
Table 1 shows the frequently used notations in this paper.

Table 1: Notations

Notation Description

v, d, p Partition, door, and point in an indoor space
v .cost, v .waitT ime Static cost and waiting time of a partition v

e Transport in indoor space (e.g., an elevator)
w A word in a partition
QW The set of query keywords

KPS (R) The set of key partitions on route R
PC(R) Partition cost of route R
γ (R) Time cost of route R
ρ(R) Textual relevance of route R

cost (R) Route cost of route R
CKP A set of candidate key partitions
S A key partition set

A partition and a transport are the basic building blocks in an
indoor space. A point is located inside a partition or a transport.
In an indoor routing, one needs to move from one door to another
through their common partition or transport. Following [17], we
use the mapping to capture the indoor topology: Given a door di ,
we use D2P⊐(di) and D2P⊏(di) to denote the set of partitions and
transports that one can enter and leave through di , respectively.

Given a partition vk or a transport ek , and two different doors
di and dj , the intra-partition door-to-door distance from di to dj is
defined as

δd2d (di ,dj) =

|di ,dj |E , if vk ∈ D2P⊐(di) and vk ∈ D2P⊏(dj)
0, if ek ∈ D2P⊐(di) and ek ∈ D2P⊏(dj)
∞, otherwise

In the case that di and dj are in the same partition (sayvk), one can
enter the partition fromdi and leave bydj . We measure the distance
between di and dj by Euclidean distance. Other distance metrics
such as obstacle distance can also be adopted here. Following [9],
we handle the special case of di = dj , which happens when one
needs to enter a partition due to its keyword relevance but then
leave it from the same door for further routing, as follows. We set
δd2d (di ,di) to be the double of the longest non-loop distance one

75

Time-Constrained Indoor Keyword-aware Routing SSTD ’21, August 23–25, 2021, virtual, USA

can reach inside the partition from the door di . In the case that di
and dj are in the same transport, we simply regard the door-to-door
distance from di to dj as zero. To reflect the practical time needed
to pass a transport, we assign each transport a waiting time, as to
be detailed in Section 3.1.

Given a point pi , we use v(pi) to denote the partition or trans-
port that contains pi . Given a partition vi , we use P2D⊐(vi) and
P2D⊏(vi) to denote the set of doors through which one can enter
and leave the partition vi , respectively. Similarly, given a transport
ei , we use E2D⊐(ei) and E2D⊏(ei) to denote the set of doors which
one can enter and leave the transport ei , respectively. Given a door
dk and a point pi , the point-to-door distance and door-to-point
distance are defined as

δpt2d (pi ,dk) =

|pi ,dk |E , if dk ∈ P2D⊏(v(pi))
0, if dk ∈ E2D⊏(v(pi))
∞, otherwise

δd2pt (dk ,pi) =

|dk ,pi |E , if dk ∈ P2D⊐(v(pi))
0, if dk ∈ E2D⊐(v(pi))
∞, otherwise

When the context is clear, we use δ∗(xi ,x j) to indicate the dis-
tance from a point/door xi to a point/door x j .

2.2 Problem Definition

Definition 1 (Route [9]). A route R = (xs ,di , ...,dn ,xt) is a path
through a sequence of doors from point/door xs to xt . A route is a com-
plete route if xs and xt are the source and target points, respectively.
Otherwise, it is a partial route.

We can easily obtain the partitions and transports that a route R
passes using the aforementioned indoor topological mappings.

Consider the partial route R on 2/F in Figure 1, we have R =
(ps ,d26,d22,d25,d25,d2). We know that R passes v23,v22,v25 and
v20 since R = (ps

v23
−−−→ d26

v22
−−−→ d22

v20
−−−→ d25

v25
−−−→ d25

v20
−−−→ d2).

We use the term relevant partition [9] to refer to a partition
that covers ps , pt or a subset of query keywords. Given a route R, a
key partition of R is a partition that R has been through and that
has the maximum keyword relevance (to be given in Definition 6)
for at least one query keyword. We use KPS(R) to denote the set
of key partitions in R. Considering the example in Figure 1 with
query keywords starbucks and apple, partitions v10,v11,v14, and
v23 are relevant partitions and KPS(R) = {v11,v14}.

Definition 2 (Partition Cost). We define the partition cost of a route
as the sum of the static cost of its key partitions.

PC(R) =
∑

v ∈KPS (R)
v .cost

Note that any monotonic function can be used to model a route’s
partition cost. In this paper, we use the sum function for conciseness.

Definition 3 (Route Cost). We define the cost of a route as the linear
combination of its partition cost and textual relevance, i.e.,

cost(R) = α ·
PC(R)

PCmax · |QW |
+ (1 − α) · (1 − ρ(R)) (1)

whereα ∈ [0, 1] is a user parameter, PCmax is the maximum partition
cost in the indoor venue, and ρ(R) is the textual relevance of R (to be
defined in Section 3.2).

The parameter α controls the weighting between the partition
cost and textual relevance, and can be tuned according to the user
needs. A smaller α puts a larger weight on route’s textual relevance,
while a larger α focuses more on the partition cost. We vary and
evaluate this parameter in Section 5.2.1.

We define our problem as follows.
Problem 1 (Time-Constrained Indoor Keyword-aware Routing).
Given a source pointps , a target pointpt , a setQW of query keywords,
a time constraint ∆Max and an integer k , a Time-Constrained In-
door Keyword-aware Routing Query T IKRQ(ps ,pt ,QW ,∆Max ,k)
returns k complete routes with the smallest route cost, and each such
a route R from ps to pt (i.e., R = (ps , ...,pt)) has a time cost γ (R) less
than the time constraint (i.e., γ (R) < ∆Max).

Above,γ (R) captures the time needed for R to complete the given
routing query (to be defined in Section 3.1). We say that a route is
a feasible route if it satisfies the time constraint. Therefore, the
TIKRQ is to find k feasible routes with minimum cost.

To ensure the resulting routes are meaningful, we use the fol-
lowing two principles of indoor routing [9].

Principle of Regularity. Unlike traditional outdoor routing algo-
rithms [2, 34] that exclude loops in a route to avoid endless route
searching, we allow a regular route in the indoor space to have a
loop of doors in some cases. Consider the example in Figure 1, a
user who wants to visit partition v14 must enter and leave d14, pro-
ducing a partial route (...,d14,d14, ...). The principle of regularity
disqualifies a route that contains a loop without any key partitions
in the loop. That is, we exclude loops in a route between any two
key partitions. For example, for a query with the keyword starbucks,
R′ = (ps ,d26,d26,d23, sd2, sd1,d14,d14,pt) is not allowed since v22
visited by the loop (d26,d26) is not a key partition of the query.

Principle of Diversity. The concepts of diversifying top-k re-
sults [20, 35] and prime route [9] inspire us to avoid homogeneous
routes in our routing results. We propose a concept of unique
partition set. Specifically, for each of the k resulting routes, its key
partition set must be unique. That is, for any two resulting routes
R and R′, we must have KPS(R) , KPS(R′).

Table 2: Four Example Routes from ps to d2
Each Covering costa and citibank

R1 (ps
v23
−−−→ d26

v22
−−−→ d22

v20
−−−→ d21

v21
−−−→ d21

v20
−−−→ d25

v25
−−−→ d25

v20
−−−→ d2)

R2 (ps
v23
−−−→ d26

v22
−−−→ d22

v20
−−−→ d25

v25
−−−→ d25

v20
−−−→ d21

v21
−−−→ d21

v20
−−−→ d2)

R3 (ps
v23
−−−→ d23

v20
−−−→ d25

v25
−−−→ d25

v20
−−−→ d21

v21
−−−→ d21

v20
−−−→ d2)

R4 (ps
v23
−−−→ d23

v20
−−−→ d21

v21
−−−→ d21

v20
−−−→ d25

v25
−−−→ d25

v20
−−−→ d2)

Consider Figure 1 as an example. Suppose a user wants routes
fromps tod2 while covering two keywordsQW = {costa, citibank}
in the route. Several possible routes are listed in Table 2. For ease of
illustration, we insert the partitions that connect two consecutive
items in the route. We can see that KPS(R1)=KPS(R2)=KPS(R3)
= KPS(R4)= {v23,v21,v25,v20}. The four routes pass the same set
of key partitions with different orders and different partial routes

76

SSTD ’21, August 23–25, 2021, virtual, USA H.K.-H. Chan et al.

in-between. Thus, only one of the four routes should be included
in the query result.

Note that this requirement provides a more diversified result
than a prime route [9], as the unique partition set is more restric-
tive than the prime route. In particular, the concept of prime route
only requires SRP(R) , SRP(R′), where SRP(R) denotes the se-
quence of relevant partitions in R. In our example, R1 and R2 (or
R3 and R4) could be in the prime route query result at the same
time, since SRP(R1)=⟨v23,v21,v25,v20⟩ is different from SRP(R2) =
⟨v23,v25,v21,v20⟩.

3 TIME COST AND TEXTUAL RELEVANCE
In this section, we detail the formulation of the time cost γ (R) in
Section 3.1 and the textual relevance ρ(R) in Section 3.2.

3.1 Time Cost
In this paper, we consider two types of time for a route R.
Travelling Time. The travelling time of a route R, denoted by
ttravel (R), refers to the time needed for a user to complete R. As
discussed in Section 1, both walking and taking a transport incur
travelling time, and we model them as follows. Assuming the av-
erage human walking speed swalk is 5km/hour 2, we can easily
compute the travelling time on walking as the walking distance
divided by the walking speed.

To model the travelling time on taking transport, consider a user
taking an elevator for illustration. To take an elevator, the total
journey time includes waiting (outside the elevator) and travelling
(inside the elevator). The estimation of this waiting time can be
based on the average value of previous records, which is beyond
the scope of this paper. This paper assumes a fixed waiting time
(e.g., 30 seconds), rather than a distribution, for ease of illustration.
Similar to computing the walking time, the travelling time on an
elevator is the height of travel from one floor to another divided by
the elevator’s speed.

Based on the above, given two doors di and dj that connect to a
partition v or a transport e , the time needed to travel from di to dj
is defined as

γ(di ,dj) =

δd2d (di ,dj)

swalk
, if v ∈ D2P⊐(di) and v ∈ D2P⊏(dj)

|di ,dj |
se + ewait , if e ∈ D2P⊐(di) and e ∈ D2P⊏(dj)

∞, otherwise

where |di ,dj | is the actual distance of the two doors in e , se is the
moving speed of the transport, and ewait is the waiting time of the
transport. For simplicity, we assume that the start point and target
point are located in partitions only 3.

The travelling time of R = (ps ,di , . . . ,dk ,pt) can be computed
as follows.

ttravel (R) =
δ∗(ps ,di)

swalk
+

n−1∑
k=i

γ (dk ,dk+1) +
δ∗(dn ,pt)

swalk

2Weuse a universal walking speed in this paper for ease of illustration, but the proposed
method can be easily adapted to the walking speed tailored for partitions.
3We do not consider the extreme case that the source and target points are located in
the transport, but our technique can easily support it.

Partition Time. The partition time of a route R, denoted by
tpar t (R), is the sum of time spent in the key partitions where the
user stays to fulfill her purposes implied by the keywords, i.e.,

tpar t (R) =
∑

v ∈KPS (R)
v .waitTime

where v .waitTime denotes the waiting time of the partition v . Sim-
ilar to the transport’s waiting time, we assume a fixed value for the
waiting time in each partition.
Time Cost. Based on the above, we define the time cost of a route
by the following cost function.

Definition 4 (Time Cost). Given a routeR, the time cost ofR, denoted
by γ (R), is defined as the sum of the travelling time and the waiting
time of R.

γ (R) = ttravel (R) + tpar t (R) (2)

3.2 Textual Relevance
Keywords in Indoor Space. In the literature, an identity word
(i-word) [9] identifies the specific name of a partition (e.g., star-
bucks, apple), and a thematic word (t-word) [8, 9] refers to a tag
relevant to that partition (e.g., coffee, laptop). In addition, we employ
a category word (c-word) that specifies the type of the partition
(e.g., coffee shop, supermarket). A partition can be associated with
one c-word and one i-word, but a set of t-words. For example, a
partition in a shopping mall is associated with a c-word coffee shop,
an i-word starbucks and t-words coffee, mocha, latte; another parti-
tion can be associated with a c-word electronics, an i-word apple,
and t-words smartphone, laptop, headphone. Note that it is possible
to extend our organization to support one partition associated with
multiple or hierarchical c-words, which is left for future work.
Insufficiency of Existing Setting. The previous work [9] differ-
entiates two types of keywords associated with indoor partitions.
In particular, they assumed that two partitions having the same i-
word must have the same set of t-words. However, this assumption
over-simplifies the case. For example, depending on the shop’s size
and location, two starbucks can have different menus. A smaller
one might not have some products (e.g., cakes and juices) for sale,
while the one close to a train station sells more grab-and-go foods.
As another example, some ATMs offer different currencies in cash,
while some others do not. Compared to the assumption and the
limitations in the organization of indoor space keywords in [9], our
keyword organization, which we introduce below, is more general
and comprehensive.

We assume that the three sets of words are disjoint for ease of
illustration. Given a partition vi , a P2I mapping P2I (vi) maps vi
to its associated i-word, and a P2T mapping P2T (vi) maps vi to its
associated t-words. Given an i-wordwi , an I2C mapping I2C(wi)

maps wi to its associated c-word, and an I2P mapping I2P(wi)

mapswi to the partitions associated with it. Given a t-wordwt , a
T2P mapping T2P(wt) mapswt to the partitions associated with
it. Given a c-word wc , a C2I mapping C2I (wc) maps wc to the
associated i-words.

To better represent the real-world setting, we maintain P2I as a
many-to-one mapping and I2P as a one-to-many mapping such that
a partition can be associated with one i-word, and each i-word can
be associated with multiple partitions. For example, there could be

77

Time-Constrained Indoor Keyword-aware Routing SSTD ’21, August 23–25, 2021, virtual, USA

multiple starbucks in a mall. Wemaintain P2T and T2P as twomany-
to-many mappings, meaning that each partition can be associated
with multiple t-words and vice versa. Besides, we maintain I2C as a
many-to-one mapping and C2I as a one-to-many mapping. Figure 2
shows an example of the organization of indoor space keywords.

𝑣!!
𝑣!"
𝑣#!
𝑣#$
…

𝐶𝑊! bank

𝐶𝑊# coffee shop

𝐶𝑊% electronics

𝐶𝑊" supermarket

… …

ID WORD

𝐼𝑊! apple

𝐼𝑊# citibank

𝐼𝑊% costa

𝐼𝑊" starbucks

… …

ID WORD

𝑇𝑊! charging cable

𝑇𝑊# cheesecake

𝑇𝑊% coffee

𝑇𝑊" smartphone

… …

ID WORD

i-word set c-word sett-word set Partition

ID

Figure 2: Keyword Mappings in Indoor Space

Given the organization described above, we are now ready to
introduce the calculation of keyword relevance between the query
keywords and a route as follows.
Keyword Relevance Computation. Given a set QW of query
keywords, we first match each query wordw ∈ QW to the candi-
date partitions for facilitating the routing afterwards.

Definition 5 (Candidate Partitions). Given a query keyword w ∈
QW , its candidate partitions CP(w) is represented as a set of entries
each of which is in the form of (vi , rs), where vi is the matching
partition and rs is the relevance score between vi andw . We discuss
different cases based on the type ofw as follows.
• Case 1 (w is a c-word): All partitions associated with the matching
i-words in C2I (w) are matched with rs = 1.
• Case 2 (w is an i-word): All partitions associated with the i-word
w are matched with rs = 1. To enrich the result, we also include
partitions associated with other i-words. In particular, all partitions
associated with an i-word w ′i such that I2C(w ′i) = I2C(w) are
matched with rs = 0.1 4.
• Case 3 (w is a t-word): All partitions associated with the matching
t-wordw are matched with rs = 1. All partitionsvj associated with
t-words t ′i such that t ′i ∈

⋃
vi ∈T 2P (w) P2T (vi) are matched with

rs =
P2T (vj)∩

⋃
vi ∈T 2P (w) P2T (vi)

P2T (vj)∪
⋃
vi ∈T 2P (w) P2T (vi)

based on the Jaccard Similarity.

Compared to [9], our definition has an extra case that w is a
c-word, and it uses a different scoring scheme to handle the case
thatw is an i-word, which is designed based on our new keyword
organization.
Definition 6 (Keyword Relevance). Given a route R and a query
keywordwQ , we define the keyword relevance ofwQ w.r.t. R as the
maximum rs of vi ∈ R as follows.

rel(R,wQ) = max
(vi ,r s)∈CP(wQ) |vi ∈R

CP(wQ).rs

Definition 7 (Textual Relevance). Given a route R, we define the
textual relevance ρ(R) as the sum of keyword relevance of all query
keywords as follows.

ρ(R) =
(∑

wQ ∈QW
rel(R,wQ)

)
/|QW |

where |QW | is the normalization term to make ρ(R) fall in [0, 1].
4Any small value can be used here as long as the original i-wordw has a higher score.
The routes withw will have higher rankings than those withw ′i .

Consider our example in Figures 1 and 2. Suppose the query key-
words are coffee and charging cable (both keywords are t-words). R
passes the key partitionsv11 andv25, which is associatedwith charg-
ing cable (i.e., v11 ∈ T2P(TW1)) and coffee (i.e., v25 ∈ T2P(TW3)),
respectively. Thus, we have ρ(R) = 1+1

2 = 1. If the query keywords
are changed to starbucks (which is an i-word) and electronics (which
is a c-word),v11 andv25 are still the key partitions of R, and we have
ρ(R) = 0.1+1

2 = 0.55 since I2P(v11) = costa is of the same category
coffee shop with starbucks, and I2P(v25) = apple is associated with
the category electronics.

4 TIKRQ PROCESSING FRAMEWORK
In this section, we propose our Set-Based Search Algorithm to find
the resulting routes. Before we present the algorithm, we extend
the concept of skeleton distance [29] to skeleton time which will
be used in our pruning rules. Given two indoor items xi and x j , the
skeleton time γ (xi ,x j)L can be used as a lower bound of the time
needed from xi to x j .

γ (xi ,x j)L =

|xi ,x j |E
swalk

, if xi and x j are on the same floor;

min
(
minsdi ∈SD(xi),

sdj ∈SD(x j)

|xi ,sdi |E+δs2s (sdi ,sdj)+ |sdj ,x j |E
swalk

,

minedi ∈ED(xi),
edj ∈ED(x j)

(
γ (xi , edi)L+

γe2e (edi , edj) + γ (edj ,x j)L
))
, otherwise.

where γ (xi ,x j)L is the time needed to walk in Euclidean distance
from xi to x j if they are on the same floor. Otherwise, we find the
time needed for the fastest path that goes through the staircase
doors (e.g., sdi ∈ SD(xi) and sdj ∈ SD(x j)) or the transport doors
(e.g., edi ∈ ED(xi) and edj ∈ ED(x j)) to reach x j from xi .

4.1 Set-Based Search Algorithm (SSA)
We give the following observation which provides a clue to devel-
oping an efficient algorithm for TIKRQ.

Observation 1 (Partition Set). Given a set S of key partitions, any
route R formed by the partitions in S has the same partition cost and
textual relevance.

With a slight abuse of notations, we denote the partition cost
and textual relevance of a set S of key partitions by PC(S) and ρ(S),
respectively. It is easy to see that bothmetrics are not affected by the
order of visiting, and thus PC(S) = PC(R) and ρ(S) = ρ(R) for any
route R formed by the key partitions in S . Based on this observation,
we propose a set-based search algorithm SSA as follows.

High Level Idea. This algorithm searches for the resulting routes
by focusing on the partition sets, as shown in Figure 3. For each set
S of key partitions, we check whether any feasible route R exist (i.e.,
γ (R) < ∆Max). If such a route exists, the top-k results are updated
accordingly.

The advantage of SSA is that it separates the time needed of
a route R from its cost part. Thus, effective pruning techniques
based on partition cost and textual relevance can be applied to

78

SSTD ’21, August 23–25, 2021, virtual, USA H.K.-H. Chan et al.

Cross-iteration computation strategy

Find candidate
key partition
set (Step 1)

Find a key
partition set

(Step 2)

Maintain
top-k

results

No

Lemmas 1 and 2

Feasible
route exist?

(Step 3)

Yes
Query

Pruning 2Pruning 1 Lemma 3Pruning 3

Figure 3: Flow of Set-based Search Algorithm

filter out unpromising routes quickly, without performing the time-
consuming route search and expansion. Compared to the graph-
based algorithms in [9], SSA maps multiple routes into one set,
resulting in a much smaller search space. Note that this search
strategy naturally conforms with our requirement of the unique
partition set, which improves the diversity of our top-k results.

Specifically, SSAmaintains a listTopKRoutes storing the current
top-k best feasible routes, and curKCost storing the cost of the k-th
route found so far. It has four major steps.

• Step 1 (Candidate Key Partition Set Finding): Find the candidate
key partition set (CKP) of candidate key partitions from the set
of query keywords QW .
• Step 2 (Key Partition Set Finding): Find a set S of key partition set
from CKP to be the key partition set of a route R to be found.
• Step 3 (Feasible Route Finding): Find a feasible route R which
starts from ps , passes all key partitions in S and ends at pt (if
any), and updateTopKRoutes withR correspondingly if cost(R) <
curKCost .
• Step 4 (Iterative Step): Resume Step 2 until all key partition sets
are traversed.
The above search strategy is based on the set of all possible

combinations of CKP . A straightforward implementation of this
strategy would enumerate 2 |CKP | key partition sets, and each set
would have |S |! possible routes. This is prohibitively expensive in
practice. Thus, we need a careful design to prune the search space
effectively. In the following, we discuss the pruning techniques
enjoyed by SSA.

4.1.1 Pruning at Step 1.

Pruning Rule 1 (Candidate Key Partitions). For a partition vi in a
key partition set S , if its time cost lower bound LB(γ (vi)) > ∆Max ,
then vi can be pruned, where

LB(γ (vi)) = γ (ps ,vi ,pt) + twait (vi)

γ (ps ,vi ,pt) = min
di ∈P2D⊐(vi),
dj ∈P2D⊏(vi)

(
γ (ps ,di)L +

δd2d (di ,dj)

swalk
+ γ (dj ,pt)L

)
4.1.2 Pruning at Step 2.
Firstly, we utilize an inverted file indexed by QW to organize CKP
to avoid generating sets that contain ‘unnecessary’ key partitions.
That is, only the partition sets with each partition contributing to a
query keyword will be considered. Note that in this way, we also
bound the size of each set S to |QW |.

Secondly, given a subset S ′ of the key partition set S to be gener-
ated, we impose a cost lower bound costLB (S |S ′) of S , as follows.

costLB (S |S
′) = α

PC(S ′)

PCmax · |QW |
+(1−α)(1−

ρ(S ′) + (|QW | − |S ′ |)

|QW |
)

Lemma 1 (Set Cost). Let S be a key partition set and S ′ ⊂ S , we
have cost(S) ≥ costLB (S |S

′).

Proof 1. Since |S | = |QW | > |S ′ | and each key partition has its
relevance rs ≤ 1 for each query keyword, we have ρ(S) ≤ ρ(S ′) +
(|QW | − |S ′ |). It is easy to see that PC(S ′) ≤ PC(S). Thus, we have
cost(S) > costLB (S |S

′).

The above Lemma suggests that if costLB (S |S ′) > curKCost , we
can terminate the enumeration on S ′.

Thirdly, we sort the partitions vi in each inverted list in ascend-
ing order of f (vi), where

f (vi) = α
PC(vi)

PCmax
− (1 − α) vi .rs

Lemma 2 (List Ordering). Let vi and vj be two key partitions in an
inverted list with f (vi) ≤ f (vj), S ′ be a key partition set contain-
ing vi and S ′′ = S ′ \ {vi } ∪ {vj }. Then, we have costLB (S |S ′) ≤
costLB (S |S

′′).

Proof 2. Consider the set S ′o = S ′ \ {vi }. It can be proven that
costLB (S |S

′
o) ≥ costLB (S |S

′) −
f (vi)
|QW | . Since S

′′ = S ′o ∪ {vj }, we have

costLB (S |S
′
o) +

f (vj)
|QW | ≥ costLB (S |S

′′). As f (vi) ≤ f (vj), we have
costLB (S |S

′) ≤ costLB (S |S
′′).

By ordering the inverted lists in this way, we can impose an early
stopping condition: If costLB (S |S ′) > curKCost , we can terminate
the enumeration of the remaining partitions in the list.

Fourthly, some key partition sets can be excluded by considering
their upper bound of total waiting time.
Pruning Rule 2 (Set Waiting Time). Given a key partition
set S , we upper bound S’s total waiting time of partitions in S ,∑
v ∈S v .waitTime , bywaitTimemax , which is defined as follows.

waitTimemax = ∆Max − γ (ps ,pt)L

Note thatwaitTimemax can be pre-computed because γ (ps ,pt)L
is identical for all queries with the same pair of ps and pt .

4.1.3 Algorithm SSA.
We design SSA as shown in Algorithm 1. Specifically, it maintains
a list TopKRoutes storing the k best-known routes found so far
(line 2). Then, it finds the set of candidate key partitionsCKP (line 4),
by utilizing Pruning 1. Next, it performs an iterative process as
follows (lines 5 to 11). It iterates through each key partition set S ,
and if S passes our lower bound cost checking (Lemma 1) and
waiting time checking (Pruning 2), it finds the feasible route R
of S by f indFeasibleRoute() (to be detailed in Algorithm 2). If such
a route R exists, we update the TopKRoutes by R. The algorithm
terminates when all sets have been processed. The TopKRoutes is
then returned as the result.

One remaining issue is that given a set S , how to efficiently find
the feasible route, if it exists. We present an algorithm for that in
the following section.

79

Time-Constrained Indoor Keyword-aware Routing SSTD ’21, August 23–25, 2021, virtual, USA

Algorithm 1 SSA (ps , pt , QW , ∆Max , k)

1: if δ (ps ,pt) > ∆Max then return ∅
2: TopKRoutes ← ∅

3: waitTimemax ← ∆Max −
δ (ps ,pt)
swalk

4: CKP ← ∪wQ ∈QW CP(wQ) ▷ Step 1
5: for each possible subset S of CKP do ▷ Step 2
6: if costLB (S) > curKCost then continue;
7: if

∑
v ∈S v .waitTime > waitTimemax then continue;

8: R ← f indFeasibleRoute(S,ps ,pt ,∆Max) ▷ Step 3
9: if R , ∅ then
10: update TopKRoutes with R
11: curKCost ← cost of the k-th route in TopKRoutes
12: return TopKRoutes

4.2 Feasible Route Search
Given a set S of partitions, we want to find a feasible route from
ps to pt that passes all partitions in S . A naive approach is to try
all permutations of the partitions in S . Instead, we propose a best-
first search algorithm that can find the feasible route efficiently. It
returns the feasible route R if it exists. Otherwise, it returns ∅.

Before we present the algorithm, we introduce some pruning
techniques to speed up the feasible route search. First, not all partial
routes need to be explored. In particular, given a partial route R =
{ps , ...,dk }, we compute its lower bound time cost and introduce a
pruning as follows.
Pruning Rule 3 (Route Time Cost). A partial route R = {ps , ...,dk }
can be pruned if γLB (R) = γ (R) + γ (dk ,pt)L ≥ ∆Max .

Second, not all doors in each key partition need to be considered
when expanding a partial route. Given a key partition v ′, a partial
route R = {ps , ...,dy−1,dy } that has expanded to v ′, if both dy−1
and dy are connected to v ′, R′ can be safely discarded. Formally,
we have the following lemma.
Lemma 3 (Route Pruning). Consider a partial route R′ =
{ps , ..,dy−1 ,dy }, where dy−1,dy ∈ P2D⊐(v ′). There exists a route R
that connects to v ′ and is faster than R′.

Proof 3. Consider another partial route R = {ps , ..,dy−1}. It is easy

to see that γ (R′) ≥ γ (R) since γ (R′) = γ (R) +
|dy−1,dy |E
swalk

.

Based on the above Lemma, a partial route R′ = {ps , ..,dy−1,dy }
can be pruned if dy−1,dy ∈ P2D⊐(v ′).

Algorithm 2 presents the f indFeasibleRoute algorithm. Specifi-
cally, a minimum priority queue Q (initialized in line 1) is used to
handle the order of route expansion. An element inQ is a four-tuple
(v,R,γLB , S

′) that stores the local information of the current partial
route, wherev is the last partition thatR reaches,R = {ps ,di , ...,dk }
is the partial route that has been expanded so far, γLB is the lower
bound time cost of R∪{pt }, and S ′ is the set of remaining partitions
that have not been explored by R yet. The elements in Q are sorted
in ascending order of |S ′ |.

The algorithm initializes a route R0 by ps and puts it into Q
(lines 2 to 3). It then performs the expansion iteratively (lines 4
to 18). In each iteration, it pops out the element (v,R,γLB , S ′) with
the smallest |S ′ | from Q (line 5), and check if S ′ is empty. If so,

Algorithm 2 findFeasibleRoute (S = (v1,v2, ...,vn), ps , pt , ∆Max)

1: Initialize a priority queue Q
2: R0 ← (ps)
3: Q .push(v(ps),R0, 0, S)
4: while Q is not empty do
5: (v,R,γLB , S

′) ← Q .pop()
6: dk = R.tail
7: if S ′ = ∅ then
8: find fastest route from dk to pt
9: R′ ← append (dk , ...,pt) to R
10: if γ (R′) ≤ ∆Max then return R′

11: for each v ′ ∈ S ′ do
12: for each dy ∈ P2D⊐(v ′) do
13: find fastest route from dk to dy
14: if dy−1 ∈ P2D⊐(v ′) then continue;
15: R′ ← append (dk , ...,dy) to R
16: γ ′LB ← γ (R′) + γ (dy ,pt)L
17: if γ ′LB ≤ ∆Max then
18: Q .push(v ′,R′,γ ′LB , S

′ \ {v ′})

19: return ∅

all key partitions in (the original) S is covered by R, and it con-
nects R from dk to pt to form a complete route R′. If γ (R′) < ∆Max ,
it returns R′ immediately as R′ is a feasible route (lines 7 to 10).
Otherwise, it expands the current partial route to cover a key parti-
tion v ′ ∈ S ′ (lines 11 to 18). For each dy ∈ P2D⊐(v ′), it finds the
fastest route from dk to dy , checks if the route passes the checking
(Lemma 3). If so, it generates a new route R′ by appending the
fastest route to R, and pushes it to Q if it passes the time constraint
checking (Pruning 3). The expansion continues until all elements
in Q have been processed. It returns ∅ if no feasible route can be
found.

Cross-Iteration Computation Strategy. To further speed up the
algorithm, we have the following strategy to store and reuse the
information computed in the current iteration for future iterations.

Consider an iteration. Given two doors di and dj that we have
processed, we maintain the fastest partial route information from
di to dj in a global hashmap Hf pr , to avoid re-computation in the
future iterations. In particular, when we find the fastest route from
di and dj (line 13), we check whether key = (di ,dj) exists in Hf pr .
If so, we can append the saved route to the current route directly.
Otherwise, we proceed to search for the route. Once such a route
is found, it is inserted into Hf pr .

Moreover, we maintain another global hashmap Hin to store
those (partial) routes that are found to be infeasible. To illustrate,
consider an example with S = {v1,v2,v3}. If we found that there
does not exist a feasible (partial) route R that contains ⟨ps ,v1,v2⟩
when we process S , we add key = ⟨v1,v2⟩ intoHin . Then, when we
find the feasible route for another set S ′ = {v1,v2,v4}, we do not
need to consider R that contains ⟨ps ,v1,v2⟩ since it must also be
infeasible. Formally, we perform a checking when we search for the
feasible route for a set S as follows. If any route Rin is in Hin , we
know that Rin is infeasible and return ∅ immediately. Note thatHin
can be updated accordingly when we check the feasibility of new

80

SSTD ’21, August 23–25, 2021, virtual, USA H.K.-H. Chan et al.

partial routes to a remaining key partition. If no new partial route
satisfies the time constraint checking, Rin is inserted into Hin .

4.3 Time Complexity
The time complexity of SSA is dominated by the key partition sets
processing part (lines 5 to 18 in Algorithm 1). Let |KPS | be the
number of key partition sets processed in SSA and θ be the time
complexity of executing one iteration. The time complexity of SSA
is O(|KPS | · θ). In practice, we have |KPS | << 2 |CKP | since it
utilizes the pruning techniques.

Consider θ . It is dominated by the time cost of executing the
f indFeasibleRoute() method (i.e., Algorithm 2). Let |dmax | be the
maximum number of doors a partition has, andm be the cost for
computing the fastest route from a door to another. The time cost
isO(|S |! · |S | · |dmax |

2 ·m), where |S | = |QW |, since the number of
possible permutations of S is O(|S |!), and the time complexity of
computing a complete route for one permutation isO(|S | · |dmax |

2 ·
m). Note that in practice the running time should be much faster
since our cross-iteration computation strategy can help to reduce
the computation needed. In summary, the time complexity of SSA
is O(|KPS | · |S |! · |S | · |dmax |

2 ·m).

5 EMPIRICAL STUDIES
5.1 Experimental Set-up

Indoor Space. Following [9], we generate a n-floor building based
on a real world floor plan 5, where n = {3, 5, 7, 9}. Each floor is
1368m × 1368m, consists of 96 rooms, 4 hallways, and 4 staircases.
We obtain 141 partitions and 200 doors on each floor by decompos-
ing those irregular hallways into smaller and regular partitions. To
model the elevators in an indoor space, we convert two staircases to
elevators that connect to all floors, rather than the adjacent floors
only. Each elevator has a waiting time of 30 seconds and takes 10
seconds to traverse from one floor to another. The remaining two
staircases connect two adjacent floors, each being 20m long. By
default, we set n = 5 and the indoor space contains 705 partitions
and 1100 doors.

PartitionKeywords.We assign keywords to each room as follows.
First, we crawl the shop information of five shopping malls in Hong
Kong 6 online using Scrapy. We obtain 2074 documents for 1225
shop brands. All the 1225 brand names are used as i-words. Second,
we manually categorize these brand names into 11 categories, fol-
lowing the categorization used in the shopping malls (e.g., clothing,
cosmetics and restaurant). These categories are used as the c-words.
Each category contains 111 i-words on average. Third, we feed
these i-words into the RAKE algorithm [22] to extract keywords
from the corresponding documents. Only 1120 i-words yield ex-
tracted keywords. For each such i-word, we use up to 60 extracted
keywords with the highest TF-IDF values. In total, we have 9195
extracted keywords and each i-word corresponds to an average of
16.6 extracted keywords. For the partitions, their static cost and
waiting time are picked uniformly at random, in the range [1, 10]
and [0, 100], respectively.

5https://longaspire.github.io/s/fp.html
6https://longaspire.github.io/s/hkdata.html

Queries.We generate the query keywords as follows. The number
of query keywords |QW | is in the range [1, 5], as over 95% of web
search queries have at most 5 keywords 7. We vary the fractions
of c-words/i-words/t-words in QW , as the parameter c/i/t . The
procedure is to vary the fraction of one type with the other two
types being changed accordingly. Take the c-word as an example,
we vary its fraction from p = [0.1, 0.9], and the fractions of i-words
and t-words are both set to be (1 − p)/2. In addition, we vary the
parameters α in Equation 1. Table 3 summaries the parameters
setting with default values in bold.

Table 3: Parameter Settings

Parameters Settings

k 1, 3, 5, 7, 9, 11
|QW | 1, 2, 3, 4, 5
∆Max 3000, 3500, 4000, 4500, 5000 (seconds)
c/i/t 0.1/0.45/0.45, 0.2/0.4/0.4, . . ., 0.05/0.05/0.9
n 3, 5, 7, 9
α 0.1, 0.3, 0.5, 0.7, 0.9

Algorithms. We compare our SSA algorithm with a baseline algo-
rithm SSA\P . SSA\P follows the workflow of SSA, but the proposed
pruning features and computation strategy in SSA are removed.
Also, we adapt the algorithm KoE [9], which is originally designed
for IKRQ. The adaption is as follows. It expands the partial routes
from ps to search one of the key partitions that can cover some of
those uncovered query keywords, until all keywords are covered,
and finally connects to pt . For each complete route, it calculates
the cost of the routes and maintains the top-k feasible routes. The
route-based speed-up techniques (i.e., Pruning 3 and Lemma 3) and
cross-iteration computation strategy are also employed in the adap-
tion to allow a fair comparison. All algorithms are implemented in
Java and run on a Mac with a 2GHz Quad-Core Intel i5 CPU and
16GB memory.
Performance Metrics. We measure the running time and the
memory cost. For each experimental setting, we generate 10 queries
and report the average results. Note that the results are based on the
queries with routes returned only. In case of no route is returned
as the result, we simply re-generate a new query.

5.2 Experimental Result
5.2.1 Efficiency Studies.

Effect of k . Figure 4 shows the results of varying k . According to
Figure 4(a), the running time of SSA and SSA\P increases slightly
when k increases. This is because a larger k incurs more routes to
be explored. KoE is insensitive to k while it always requires signifi-
cantly long time to terminate. In general, our SSA runs faster than
SSA\P and KoE by an order of magnitude, as contributed by the
pruning techniques and computation strategy employed. Accord-
ing to Figure 4(b), the memory usage of all algorithms fluctuates
with a varying k . SSA still consumes less than 10MB of memory in
different k values, much less than its competitors.
Effect of Query Size |QW |. Figure 5 shows the results of varying
the number of query keywords from 1 to 5. According to Figure 5(a),
the running time of all algorithms increases with an increasing
7http://www.keyworddiscovery.com/keyword-stats.html

81

https://longaspire.github.io/s/fp.html
https://longaspire.github.io/s/hkdata.html
http://www.keyworddiscovery.com/keyword-stats.html

Time-Constrained Indoor Keyword-aware Routing SSTD ’21, August 23–25, 2021, virtual, USA

SSA SSA\P KoE

0.1

1

10

1 3 5 7 9 11

R
u

n
n

in
g

 t
im

e
 (

s
)

k

0

20

40

60

1 3 5 7 9 11
M

e
m

o
ry

 u
s
a

g
e

 (
M

B
)

k

(a) Running time (b) Memory usage
Figure 4: Effect of k

|QW |. A larger |QW | leads to more relevant partitions and thus
more key partition sets need to be formed and considered. Moreover,
each key partition set would be larger and therefore it takes more
time to find the complete route for the set in each iteration. Our SSA
runs consistently faster than SSA\P and KoE, and the gap enlarges
when |QW | increases. This is because our pruning strategies are
more effective when |QW | is larger. According to Figure 5(b), the
memory usages of all algorithms are similar and increase steadily
with |QW |. However, SSA and SSA\P grow slower than KoE. Even
with more pruning strategies employed, SSA consumes fewer mem-
ories than SSA\P and KoE for |QW |. This is due to the use of the
cross-iteration computation strategy.

SSA SSA\P KoE

0.1

1

10

100

1000

1 2 3 4 5

R
u

n
n

in
g

 t
im

e
 (

s
)

|QW|

0

20

40

60

80

100

1 2 3 4 5

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

|QW|

(a) Running time (b) Memory usage
Figure 5: Effect of |QW |

Effect of Time Constraint ∆Max . Figure 6 reports the results
of varying ∆Max . According to Figure 6(a), the running time of
both SSA and SSA\P decreases when ∆Max increases and our SSA
always outperforms SSA\P and KoE. Note that a looser ∆Max re-
duces the difficulty of finding the feasible routes and results in
fewer key partition sets to explore. In this sense, the effectiveness
of Pruning Rules 2 and 3 is amplified in a setting of a larger ∆Max .
Referring to Figure 6(b), the memory usage of SSA decreases when
∆Max increases, since fewer paths and infeasible sets need to be
stored when a larger ∆Max is set. On the other hand, both SSA\P
and KoE are insensitive to ∆Max , and incur higher memory usages
than SSA.
Effect of Number of Floors n. To evaluate the scalability of our
algorithm, we vary n in {3, 5, 7, 9} and report the result in Figure 7.
According to Figure 7(a), the running time of all algorithms in-
creases with n increases. A higher n means a larger number of
partitions and thus more relevant partitions need to be checked.
Particularly, the elevators in our setting allow the route to pass

SSA SSA\P KoE

0.1

1

10

100

3000 3500 4000 4500 5000

R
u

n
n

in
g

 t
im

e
 (

s
)

∆max

0

20

40

60

3000 3500 4000 4500 5000

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

∆max

(a) Running time (b) Memory usage
Figure 6: Effect of ∆Max

different floors easily. Thus, the time constraint can barely help re-
ducing the search space. Nevertheless, SSA runs consistently faster
than its competitors and it can finish within 3 seconds when n
grows up to 9, showing its scalability.

SSA SSA\P KoE

0.1

1

10

100

3 5 7 9

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of floors

0

20

40

60

3 5 7 9

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Number of floors

(a) Running time (b) Memory usage
Figure 7: Effect of n

Effect of α . Figure 8 reports the running time of the algorithms
when varying α . Our SSA runs faster than SSA\P andKoE by orders
of magnitude. Also, the running time of KoE decreases when α
increases. For the route cost given in Definition 1, having a larger
α puts less weight on routes’ textual relevance, which is easier for
a graph-based algorithm like KoE to find routes with smaller cost.
The memory usages of all algorithms are insensitive to α , and SSA
uses the least memory among all three. We omit the figure here
due to the page limit.

SSA
SSA\P

KoE

0.1

1

10

100

0.1 0.3 0.5 0.7 0.9

R
u

n
n

in
g

 t
im

e
 (

s
)

α

Figure 8: Effect of α

c-word
i-word

t-word

0

0.2

0.4

0.6

0.8

0.1 0.3 0.5 0.7 0.9

R
u

n
n

in
g

 t
im

e
 (

s
)

Probability

Figure 9: Effect of c/i/t

Effect of Fraction of c/i/t-words. We vary the parameter p of
each type of word (cf. Section 5.1) and report the result for SSA in
Figure 9. In general, there is not much difference in the running
time of different combinations of keywords.

82

SSTD ’21, August 23–25, 2021, virtual, USA H.K.-H. Chan et al.

5.2.2 Effectiveness Studies.

Case Study. To show that TIKRQ is able to return desirable routes
in practice, we perform a case study by comparing the TIKRQ result
with that of minimizing the route’s time cost. The query keywords
are apple (an i-word) and coffee (a t-word), ∆Max = 3600 (one hour),
k = 3. We use α = 0.8 to reflect and suit the needs of keyword-
awareness in shopping. The routes returned by TIKRQ are listed in
Table 4. The top-1 route (sayR) has a total route costCost(R) = 0.125
and time cost γ (R) = 2474.545 (≈ 41 minutes). In particular, R has a
textual relevance of 1, as it passes the partitions apple and coffee
day (which sells coffee). In contrast, the route R′ with the minimum
time cost (i.e., γ (R′) = 1596.807 ≈ 27 minutes) incurs an overall
route cost of 0.450. R′ only has a textual relevance of 0.55, as it
does not pass apple but another partition with category electronics.
Although R has a longer time needed, its textual relevance and
route cost meet the practical user needs. This demonstrates that our
returned paths can better serve the users in the context of keyword
awareness.

Table 4: Case Study

k
Textual

Relevance Route Cost Time Cost

SSA returned path
1 1 0.05 2474.545
2 1 0.08 1891.023
3 1 0.13 2540.905

minimum time
cost path R′ 0.55 0.45 1596.807

Effect of Unique Partition Set. To compare the results with and
without adopting the concept unique partition set, we run SSA\UPS
which removed the requirement of unique partition set. In other
words, it allows different routes in the k resulting routes to have
an identical key partition set.

We measure the identical rate as the fraction of routes with the
identical key partition set with others. We ran 10 queries for each
k and Figure 10 reports the average rate. It shows that the identical
rate of SSA\UPS increases rapidly when k increases. More than 60%
of the returned routes have identical key partition sets when k ≥ 5.
Such routes are not interesting to users and hinder the diversity of
the results. This verifies that the unique partition set offers users
more diversified combinations of partitions in the result.

SSA SSA\UPS

 0

 0.2

 0.4

 0.6

 0.8

 1

1 3 5 7 9 11

Id
e
n
ti
c
a
l
ra

te

k

Figure 10: Identical Rate

6 RELATEDWORK
Query Processing in Indoor Space. Efficient indoor query pro-
cessing has received significant attention in recent years. Some
works [18, 30, 32, 33] studied the indoor spatial queries such as

range queries, kNN queries, and shortest path queries under var-
ious settings. Lu et al. [17] designed an indoor space model that
facilitates indoor shortest path finding. Shao et al. [26, 27] proposed
the VIP-Tree and KP-Tree that allows efficient processing of indoor
shortest path queries and spatial keyword queries. However, they
did not consider the keyword-aware routing queries, which is the
focus of this work. Luo et al. [19] studied the time-constrained
sequence route query in an indoor space. Their work considers
the stay-time and partitions’ category, but not the objects’ static
cost and thus their solution is not applicable to our problem. Liu
et al. [16] studied the indoor temporal-aware shortest path query,
which considers the current time stamp and the opening hours of
the doors. The temporal-aware setting is orthogonal to our problem,
and it can be integrated into our problem to model the case that
partitions and doors have different opening hours.

Keyword-aware Routing in Indoor Space. Salgado [23] studied
the keyword-aware skyline route (KSR) search in indoor venues
that considers the number of objects in the routes and the route
distances. While KSR assumes that each partition contains one
keyword, our setting allows a partition to have multiple keywords.
Salgado et al. [24] studied the category-aware multi-criteria indoor
route planning queries (CAM queries) that consider the objects’
keyword and static cost. Shao et al. [25] studied the indoor trip
planning queries (iTPQ) and developed a solution called VIP-tree
neighbor expansion that exploits the features of indoor space, such
as room and hallways. Recently, Feng et al. [9] studied the IKRQ
problem, which finds k s-to-t routes with the highest scores that
consider both the keyword relevance and spatial distance. Each
route has a distance satisfying a pre-defined distance constraint.
They defined prime route to return diverse results, and developed
two algorithms for answering the query. All of these works fail
to capture different criteria at the same time and thus their solu-
tions can not be directly applied to our problem. Table 5 shows the
summary and comparison of all those proposals and our TIKRQ.
Table 5: Existing Indoor Keyword-aware Routing Queries

Textual Spatial Static Result
Constraint Constraint Cost Diversification

KSR [23] boolean distance - Skyline
CAM [24] boolean distance

√
-

iTPQ [25] boolean distance - -
IKRQ [9] i/t-word distance - Prime route
TIKRQ i/t/c-word time budget

√
Unique partition set

Outdoor Keyword-aware Query and Routing. Some works [3,
6, 7, 21] studied the outdoor spatial keyword queries that retrieve a
single object close to the query location and relevant to the query
keywords, while others [4, 10, 31] find an object set as a solution.

Given a source point s , a target point t , and a category set C ,
the trip planning query [11] finds the shortest s-to-t route that
passes at least one object from each category in C . The optimal
sequenced route query [28] finds the shortest route that passes
the categories in the user-specified sequence, while others [5, 15]
consider partial order. The keyword-aware optimal route query [2]
finds a route that covers all query keywords, has the minimum
objective score, and meets the given budget constraint. The optimal
route search [34] finds a route that has maximum query keywords

83

Time-Constrained Indoor Keyword-aware Routing SSTD ’21, August 23–25, 2021, virtual, USA

coverage and satisfies the budget constraint. The clue-based route
search [36] allows users to specify the order of keywords to cover
and the distance range from one matched keyword to the next
one. All these works fall short for indoor topology considered in
our TIKRQ problem. Also, none of them organize the keywords
according to their semantics.

7 CONCLUSION AND FUTUREWORK
In this paper, we studied the problem of time-constrained indoor
keyword-aware routing, which find routes with minimum route
costs while satisfying a time constraint. In our setting, the route
costs capture both static cost and textual relevance of the route
to meet the practical user needs. We developed a set-based search
algorithm SSA to answer the query. Extensive experiments were
conducted that verified the efficiency of SSA.

For future work, we can take the opening hours of partitions and
doors into account. It is also interesting to study the hierarchical
word organization for partitions and to provide suggestions to refine
query keywords when no route is found. Moreover, it is relevant
to consider additional constraints like prohibiting staircases in a
route and allowing the user to specify a preferred visiting order.

ACKNOWLEDGMENT
This work was supported by Independent Research Fund Denmark
(No. 8022-00366B).

REFERENCES
[1] Anahid Basiri, Elena Simona Lohan, Terry Moore, Adam Winstanley, Pekka

Peltola, Chris Hill, Pouria Amirian, and Pedro Figueiredo e Silva. 2017. Indoor lo-
cation based services challenges, requirements and usability of current solutions.
Computer Science Review 24 (2017), 1–12.

[2] Xin Cao, Lisi Chen, Gao Cong, and Xiaokui Xiao. 2012. Keyword-aware optimal
route search. PVLDB 5, 11 (2012), 1136–1147.

[3] Ariel Cary, Ouri Wolfson, and Naphtali Rishe. 2010. Efficient and scalable method
for processing top-k spatial boolean queries. In SSDBM. Springer, 87–95.

[4] Harry Kai-Ho Chan, Cheng Long, and Raymond Chi-Wing Wong. 2018. On
generalizing collective spatial keyword queries. TKDE 30, 9 (2018), 1712–1726.

[5] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. 2008. The
multi-rule partial sequenced route query. In SIGSPATIAL. ACM, 10.

[6] Gao Cong, Christian S Jensen, and Dingming Wu. 2009. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB 2, 1 (2009), 337–348.

[7] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword search on
spatial databases. In ICDE. IEEE, 656–665.

[8] Georgios J Fakas, Yilun Cai, Zhi Cai, and NikosMamoulis. 2018. Thematic ranking
of object summaries for keyword search. DKE 113 (2018), 1–17.

[9] Zijin Feng, Tiantian Liu, Huan Li, Hua Lu, Lidan Shou, and Jianliang Xu. 2020.
Indoor Top-k Keyword-aware Routing Query. In ICDE. IEEE, 1213–1224.

[10] Tao Guo, Xin Cao, and Gao Cong. 2015. Efficient Algorithms for Answering the
m-Closest Keywords Query. In SIGMOD. ACM, 405–418.

[11] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua
Teng. 2005. On trip planning queries in spatial databases. In SSTD. Springer,
273–290.

[12] Huan Li, Hua Lu, Muhammad Aamir Cheema, Lidan Shou, and Gang Chen.
2020. Indoor Mobility Semantics Annotation Using Coupled Conditional Markov
Networks. In ICDE. IEEE, 1441–1452.

[13] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2018. Finding most
popular indoor semantic locations using uncertain mobility data. TKDE 31, 11
(2018), 2108–2123.

[14] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2018. In search of indoor
dense regions: An approach using indoor positioning data. TKDE 30, 8 (2018),
1481–1495.

[15] Jing Li, Yin David Yang, and Nikos Mamoulis. 2012. Optimal route queries with
arbitrary order constraints. TKDE 25, 5 (2012), 1097–1110.

[16] Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir Cheema, Hong
Cheng, and Jianliang Xu. 2020. Shortest Path Queries for Indoor Venues with
Temporal Variations. In ICDE. IEEE, 2014–2017.

[17] Hua Lu, Xin Cao, and Christian S Jensen. 2012. A foundation for efficient indoor
distance-aware query processing. In ICDE. IEEE, 438–449.

[18] Hua Lu, Bin Yang, and Christian S Jensen. 2011. Spatio-temporal joins on symbolic
indoor tracking data. In ICDE. IEEE, 816–827.

[19] Wenyi Luo, Peiquan Jin, and Lihua Yue. 2016. Time-Constrained Sequenced
Route Query in Indoor Spaces. In APWeb. Springer, 129–140.

[20] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying top-k results. PVLDB
5, 11 (2012), 1124–1135.

[21] Joao B Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørvåg. 2011.
Efficient processing of top-k spatial keyword queries. In SSTD. Springer, 205–222.

[22] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic
keyword extraction from individual documents. Text mining: applications and
theory 1 (2010), 1–20.

[23] Chaluka Salgado. 2018. Keyword-aware skyline routes search in indoor venues.
In SIGSPATIAL-ISA. 25–31.

[24] Chaluka Salgado, Muhammad Aamir Cheema, and David Taniar. 2018. An
efficient approximation algorithm formulti-criteria indoor route planning queries.
In SIGSPATIAL. 448–451.

[25] Zhou Shao, Muhammad Aamir Cheema, and David Taniar. 2018. Trip planning
queries in indoor venues. Comput. J. 61, 3 (2018), 409–426.

[26] Zhou Shao, Muhammad Aamir Cheema, David Taniar, and Hua Lu. 2016. VIP-tree:
an effective index for indoor spatial queries. PVLDB 10, 4 (2016), 325–336.

[27] Zhou Shao, Muhammad Aamir Cheema, David Taniar, Hua Lu, and Shiyu Yang.
2020. Efficiently Processing Spatial and Keyword Queries in Indoor Venues.
TKDE (2020).

[28] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. 2008. The
optimal sequenced route query. VLDBJ 17, 4 (2008), 765–787.

[29] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2013. Efficient distance-aware
query evaluation on indoor moving objects. In ICDE. IEEE, 434–445.

[30] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2014. Distance-aware join for
indoor moving objects. TKDE 27, 2 (2014), 428–442.

[31] Hongfei Xu, Yu Gu, Yu Sun, Jianzhong Qi, Ge Yu, and Rui Zhang. 2020. Efficient
processing of moving collective spatial keyword queries. VLDBJ 29, 4 (2020),
841–865.

[32] Bin Yang, Hua Lu, and Christian S Jensen. 2009. Scalable continuous range
monitoring of moving objects in symbolic indoor space. In CIKM. 671–680.

[33] Wenjie Yuan and Markus Schneider. 2010. Supporting continuous range queries
in indoor space. In MDM. IEEE, 209–214.

[34] Yifeng Zeng, Xuefeng Chen, Xin Cao, Shengchao Qin, Marc Cavazza, and Yanping
Xiang. 2015. Optimal Route Search with the Coverage of Users’ Preferences.. In
IJCAI. 2118–2124.

[35] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, Xuemin Lin, Muhammad Aamir
Cheema, and Xiaoyang Wang. 2014. Diversified Spatial Keyword Search On Road
Networks.. In EDBT. 367–378.

[36] Bolong Zheng, Han Su, Wen Hua, Kai Zheng, Xiaofang Zhou, and Guohui Li.
2017. Efficient clue-based route search on road networks. TKDE 29, 9 (2017),
1846–1859.

84

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Problem Definition

	3 Time Cost And Textual Relevance
	3.1 Time Cost
	3.2 Textual Relevance

	4 TIKRQ Processing Framework
	4.1 Set-Based Search Algorithm (SSA)
	4.2 Feasible Route Search
	4.3 Time Complexity

	5 Empirical Studies
	5.1 Experimental Set-up
	5.2 Experimental Result

	6 Related Work
	7 Conclusion and Future Work
	References

