

On Generalizing Collective Spatial Keyword Queries (Extended Abstract)

Harry Kai-Ho Chan¹, Cheng Long², Raymond Chi-Wing Wong¹ ¹The Hong Kong University of Science and Technology, ²Nanyang Technological University

Introduction

Collective spatial keyword query (CoSKQ):

Given: A query consisting a location and a set of keywords

Find: A set S of objects which

(1) covers the query keywords

(2) *cost(S)* is minimized

Our contributions:

(1) A unified cost function - generalizes existing cost functions

(2) A unified approach - solves CoSKQ problem in a unified way

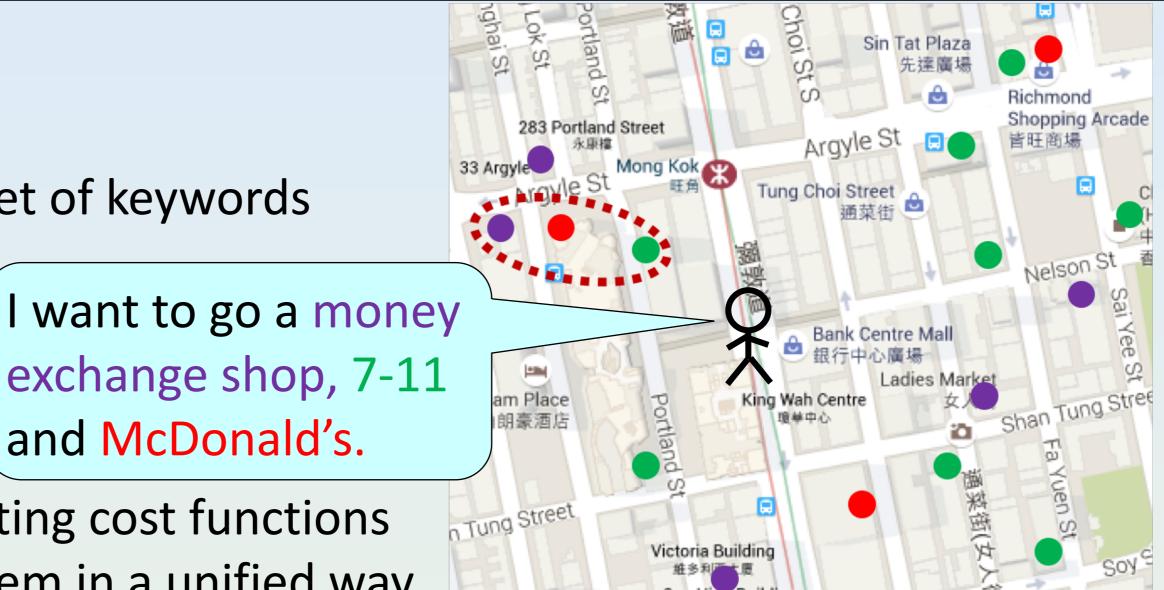


TABLE 1: $cost_{unified}$ under different parameter settings

and McDonald's.

	Parameter			$aaat \qquad a(S a, b, ba)$	Evicting/Nov
	$\alpha \in (0,1] \ \phi_1 \in \{1, \infty, -\infty\} \ \phi_2 \in \{1, \infty\}$		$\phi_2 \in \{1, \infty\}$	$cost_{unified}(S \alpha,\phi_1,\phi_2)$	Existing/New
a	0.5^{*}	1	1	$\sum_{o \in S} d(o, q) + \max_{o_1, o_2 \in S} d(o_1, o_2)$	$cost_{SumMax}$ [2]
b	0.5*	1	∞	$\max\{\sum_{o \in S} d(o, q), \max_{o_1, o_2 \in S} d(o_1, o_2)\}$	$cost_{SumMax2}$ (New)
c	0.5*	∞	1	$\max_{o \in S} d(o, q) + \max_{o_1, o_2 \in S} d(o_1, o_2)$	$cost_{MaxMax}$ [3], [17], [2]
d	0.5*	∞	∞	$\max\{\max_{o \in S} d(o, q), \max_{o_1, o_2 \in S} d(o_1, o_2)\}\$	$cost_{MaxMax2}$ [17]
e	0.5*	$-\infty$	1	$\min_{o \in S} d(o, q) + \max_{o_1, o_2 \in S} d(o_1, o_2)$	$cost_{MinMax}$ [2]
f	0.5^{*}	$-\infty$	∞	$\max\{\min_{o \in S} d(o, q), \max_{o_1, o_2 \in S} d(o_1, o_2)\}\$	$cost_{MinMax2}$ (New)
g	1	1	-	$\sum_{o \in S} d(o, q)$	$cost_{Sum}$ [3], [2]
h	1	∞	-	$\max_{o \in S} d(o, q)$	$cost_{Max}$ (New)
li	1	$-\infty$	_	$\min_{o \in S} d(o, q)$	$cost_{Min}$ (New)

Following the existing studies, $\alpha = 0.5$ is used to illustrate the case of $\alpha \in (0, 1)$ for simplicity

A Unified Cost Function

 $cost_{unified}(S|\alpha,\phi_1,\phi_2)$

$$= \left\{ \left[\alpha \cdot D_{q,o}(S|\phi_1) \right]^{\phi_2} + \left[(1-\alpha) \max_{o_1,o_2 \in S} d(o_1,o_2) \right]^{\phi_2} \right\}^{\frac{1}{\phi_2}}$$

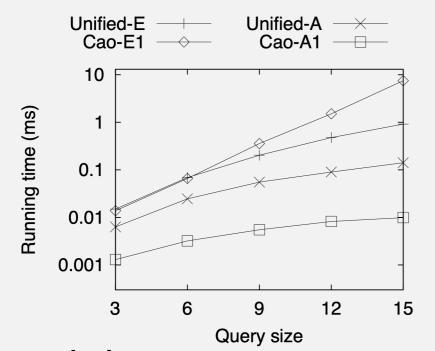
where $\alpha \in (0,1], \ \phi_1 \in \{1, \infty, -\infty\}, \ \phi_2 \in \{1, \infty\}$ The query-object distance component

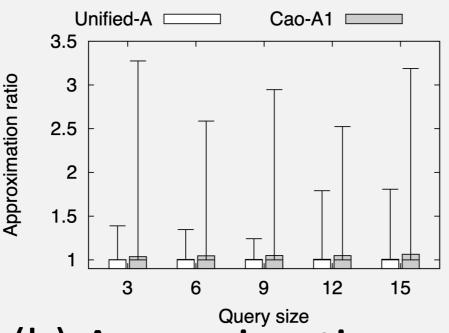
$$D_{q,o}(S|\phi_1) = \left[\sum_{o \in S} (d(o,q))^{\phi_1}\right]^{\frac{1}{\phi_1}}$$

$$= \begin{cases} \sum_{o \in S} d(o,q), & \text{if } \phi_1 = 1\\ \max_{o \in S} d(o,q), & \text{if } \phi_1 = \infty\\ \min_{o \in S} d(o,q), & \text{if } \phi_1 = -\infty \end{cases}$$

Experiment

Dataset	Hotel	GN	Web
# of objects	20,790	1,868,821	579,727
# of unique words	602	222,409	2,899,175
# of words	80.645	18.374.228	249.132.883



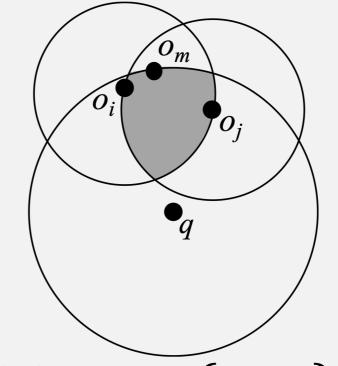


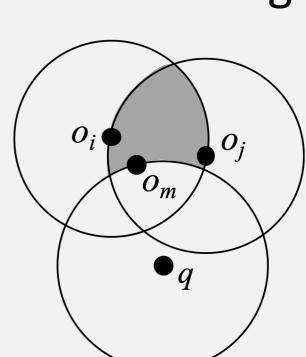
(b) Approximation ratio (a) Running time Fig. Effect of query size on $cost_{MinMax2}$

A Unified Approach

- An object set S is a **feasible set** if S covers all query keywords
- Two objects $o_i, o_i \in S$ are **object-object** distance contributors wrt S if $d(o_i, o_j)$ contribute to $\max_{o,o' \in S} d(o,o')$

Unified-E. An exact algorithm that iterates through the object-object distance contributors. It has pruning techniques that considered different parameter settings.





(a) $\phi_1 \in \{1, \infty\}$

(b) $\phi_1 = -\infty$

Fig. Search space in Unified-E Unified-A. An approximate algorithm that replaces the step of constructing the best feasible set with an efficient step of constructing the (arbitrary) feasible set, and thus it enjoys better efficiency.