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Abstract—Co-location patterns are well-established on spatial
objects with categorical labels, which capture the phenomenon
that objects with certain labels are often located in close
geographic proximity. Similar to frequent itemsets, co-location
patterns are defined based on a support measure which quantifies
the popularity (or prevalence) of a pattern candidate (a label
set). Quite a few support measures exist for defining co-location
patterns and they share an idea of counting the number of
instances of a given label set C as its support, where an instance of
C is an object set whose objects carry all the labels in C and are
located close to one another. Unfortunately, these measures suffer
from various weaknesses, e.g., some fail to capture all possible
instances while some others overlook the cases when multiple
instances overlap. In this paper, we propose a new measure called
Fraction-Score whose idea is to count instances fractionally if they
overlap. Compared to existing measures, Fraction-Score not only
captures all possible instances, but also handles the cases where
instances overlap appropriately (so that the supports defined
are more meaningful and consistent with the desirable anti-
monotonicity property). To solve the co-location pattern mining
problem based on Fraction-Score, we develop efficient algorithms
which are significantly faster than a baseline that adapts the state-
of-the-art. We conduct extensive experiments using both real and
synthetic datasets, which verified the superiority of Fraction-
Score and also the efficiency of our developed algorithms.

I. INTRODUCTION

With the advancement of technologies such as GPS,

databases that record objects with both categorical labels and

spatial information are prevalent. For instance, in ecology,

animals and plants have not only their labels such as their

species, but also location information about their habitats;

in urban areas, point-of-interests (POIs) such as restaurants

and shops have both some labels such as their business types

and brands and their locations (e.g., in Google Maps); and

in epidemiology, patients are usually recorded with not only

demographic information like their jobs, ages and races, but

also location information like their home addresses. We say

an object is an instance of a label if the object carries the

label. One interesting pattern on these objects is the co-
location pattern [20], [22], [14], [13]. A co-location pattern

corresponds to a set of labels whose instances are frequently

located in a close geographic proximity (i.e., the instances are

within distance d from each other). As an example, [20] found

that Snack Bar shops and Beauty Salon shops are often located

near each other, which forms a co-location pattern.

Similar to frequent itemsets in the context of transaction

data [1], co-location patterns are defined based on a support

measure which quantifies for a given label set how frequently

those instances of the labels in the label set are located closely,

e.g., within distance d from each other. In the context of

transaction data, the support of an itemset is defined as the

number of transactions that contain all objects in the item-

set. Unfortunately, this definition cannot be straightforwardly

adapted to our context since there exist no explicit transactions

in spatial data.

A. Weaknesses of Existing Support Measures

We say that a set of objects is an instance of a label set if the

objects carry all labels in the label set and are located within

distance d from each other. The challenge of defining the sup-

port properly is mainly due to the fact that different instances

of a label set usually overlap with each other, and this leads

to a dilemma that enumerating all instances would over-count

the support while using heuristics would miss some instances

completely. In the literature, several support measures for co-

location patterns have been proposed, namely partitioning-
based [22], construction-based [20], enumeration-based [22],

[14], [13], and participation-based [22], [14], [13], [33], [32],

[31]. The major idea shared by these approaches is to count

for a given label set the number of its instances for measuring

the support. However, they all suffer from various weaknesses,

which we explain as follows.

The partitioning-based approach uses a grid to partition the

space into many cells, constructs for each cell a transaction

involving all objects within the cell, and then defines supports

based on the generated transactions as if they are on con-

ventional transaction data [1]. With this approach, only those

instances within individual cells are considered, while those

across cells are missed since two objects within distance d but

across cell boundaries are ignored. Consider Figure 1. Suppose

the grid as indicated by the dashed lines in the figure is used.

The object set {R3, B1, C1} corresponds to an instance of

the label set {restaurant, bank, church}, but since the objects

are located in different cells, there would be no generated

transactions which involve this instance, and thus it is missed.

The construction-based approach constructs instances of

a given label set heuristically and counts the number of

constructed instances as the support. This approach is not
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Fig. 1. A small portion of a real dataset of POIs in United Kingdom, including
8 restaurants (blue icons), 3 banks (green icons) and 3 churches (purple icons),
where the icons indicate the labels of the spatial objects and the disks have
their centers at C1 - C3 and radii all equal to d

robust simply because some instances of a label set might

be missed due to the heuristic nature. To illustrate, consider

Figure 1 and a label set {bank, church}. This approach may

construct {B2, C1} as one instance first (followed by dropping

these the two objects from the database), then {B3, C2} as

another one second (followed by dropping the two objects

from the database), and then stops since no more instances

could be constructed among the remained objects. That is, in

total two instances would be constructed by this approach only,

while other instances such as {B1, C1} are missed.

The enumeration-based approach counts for a given label

set all its row instances, where an instance is said to be a row

instance if it does not have a proper subset which is also an

instance of the same label set. With this approach, no instances

can be missed, but the support definition is not anti-monotonic

and counterintuitive. To illustrate, consider Figure 1 again. We

consider a label set {bank, restaurant} and one of its subset

{bank}. The former label set has at least six row instances

(e.g., there are four within the cell containing B1 and two

within the cell containing B2) while the latter has three row

instances only, namely {B1}, {B2}, and {B3}. In this case,

the support of a label set is larger than that of its subset,

which breaks the anti-monotonicity property that is important

both to make sense semantically, and to enable the design of

efficient algorithms for frequent pattern mining. The insight

into the problem is that this approach may reuse one object in

many row instances, and since the object contributes wholly

to every row instance that it is involved in, the support is over-

measured. Due to this problem, the supports defined by this

approach are not used on their own, but as components for

defining the confidence of a rule candidate [22], [14], [13].

The participation-based approach is the most commonly

used one as it captures all possible instances and its support

definition satisfies the anti-monotonicity property. Similar to

the enumeration-based approach, the participation-based ap-

proach considers all possible row instances, but instead of

counting each individual row instance, it puts the row instances

into different groups and then counts the groups. Specifically,

it selects a label and then puts all row instances sharing the

same object with the selected label in the same group. The

rationale is that all row instances within a group are counted

as one unit of prevalence since they are all based on the same

object with a particular label. Nevertheless, in cases where

some row instances across different groups share an object,

this approach would count them as multiple units of prevalence

(one for each group), i.e., the objects contribution is over-

counted.

To illustrate, consider the example in Figure 1. Consider

the label set {restaurant, bank, church}. Suppose that the label

“restaurant” is the label used for grouping the row instances.

There would be eight groups, each based on a restaurant

R1 - R8. Within each group, all row instances contain the

same restaurant. Thus, the support defined by the participation-

based approach would be equal to 8. Nevertheless, among

these eight groups, many share objects with labels of “bank”

and/or “church” (e.g., {R3, B1, C1} and {R6, B1, C1} are two

row instances from two different groups since they contain

different restaurants but they share their restaurant and church,

i.e., B1 and C1). In this case, the prevalence is over-measured.

B. A New Support Measure: Fraction-Score

We propose a new support measure called Fraction-Score
which considers all possible row instances and at the same

time, it avoids the over-counting problem when multiple

row instances within a group share the same object (as the

participation-based approach does) as well as when multiple

row instances across groups share objects. The major idea is

to count each group as a fractional unit of prevalence instead

of an entire one, where the fraction value is calculated by

amortizing the contribution of an object among all the row

instances that the object is involved in.

Here, we briefly illustrate how the fraction values are calcu-

lated (the detailed definitions will be introduced in Section II).

Consider Figure 1 and the label set {restaurant, church}.

Suppose that label “restaurant” is the label used for grouping

the row instances. In this case, there would be eight groups,

formed by R1 - R8, respectively. Consider the group formed

by R1. It involves only one row instance, namely {R1, C1}.

The fraction associated with the group by R1 would be set

to 1/8, and the intuition is that it involves an object C1 and

there are 8 groups (or objects involving the label “restaurant”,

namely R1 - R8) that share C1 and thus, each of the groups

(including the one by R1) would be associated with a fraction

1/8 (of C1). Similarly, the fraction associated with each group

by R2 - R6 would be set to 1/8. The fraction associated

with the group by R7 would be set to 1 since (1) the

row instances in this group, namely {R7, C1}, {R7, C2}, and

{R7, C3}, involve three churches, namely C1, C2, and C3;

(2) the fractions w.r.t. these objects are 1/8, 1/2, and 1/2,

respectively (the fraction 1/8 of C1 could be explained as

above, the fraction 1/2 of C2 (C3) could be explained by the

fact that C2 (C3) is shared by two groups, namely those by R7

and R8); and (3) the fractions are first aggregated (using a sum

function) and then bounded by 1 (using a min function) simply

because each group cannot be counted as more than one unit.

Similarly, the fraction associated with the group by R8 is 1.
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Then, the sum of fractions, 1/8⋅6+1+1 = 2.75, corresponds to

the support of {restaurant, church} by Fraction-Score, which

is more meaningful than 8 that is the support defined by the

participation-based approach, since indeed there are roughly

three units of prevalence of the label set (one in left region,

one in the top-right region, and one in the middle region which

overlaps with the other two).

Besides, as will be shown later, the support defined by

Fraction-Score satisfies the desirable anti-monotonicity prop-

erty.

C. Co-location Pattern/Rule Mining

Based on the new support measure Fraction-Score, we

define the confidence of a rule candidate as in the context

of transaction data. Then, we define co-location patterns and

rules using pre-set parameters of a minimum support and a

minimum confidence, respectively. Since Fraction-Score satis-

fies the anti-monotonicity property, we adopt an Apriori-like

algorithm for mining the co-location patterns and rules. One

key component of the algorithm is to compute the support of

a given label set C, which is not as straightforward in our case

as in the transaction data scenario. To compute C’s support,

we design an algorithm, where a basic operation is to decide

whether there exists a row instance of C, which involves a

particular object. We show that the decision problem of this

operation is NP-hard (w.r.t. ∣C∣). In fact, this operation is

also necessary when the supports defined by the participation-

based approach [22], [14], [13], [33], [32], [31] are computed

and is solved by materializing all row instances of C there.

Nevertheless, we observe that the complete materialization

is an overkill since the operation could be finished by just

finding one row instance involving the object if there exists

one. Besides, we notice that though the decision problem in

general is NP-hard, it can be easily solved in certain cases

(e.g., if all objects within distance d from an object o do not

carry all the labels in C, object o cannot be involved in any

row instance of C and thus the answer to the decision problem

is clearly “no”) and/or with some information re-use strategies

(details would be introduced later).

Motivated by these observations, we design a filtering-and-
verification approach for the decision problem, which performs

a few efficient pre-checking procedures (i.e., filtering) for cases

where the decision problem could be answered easily, and for

those cases where the decision problem cannot be answered in

the filtering phase, it performs an exact verification procedure.

For the filtering phase, we developed three filters, one based

on information re-use and two on pruning. For the verification

phase, we developed three methods based on optimization

procedures and combinatorial search processes.

D. Main Contributions and Roadmap

In summary, our main contributions in this paper include:

(1) we show the weaknesses of existing support measures and

propose a new and better one called Fraction-Score, which

avoids the weaknesses and also satisfies the desirable anti-

monotonicity property; (2) for a fundamental operation in-
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Fig. 2. A toy example where × and ◦ are two labels and A1-A9 and B1-
B9 are eighteen objects each with exactly one label indicated by the shape
representing the object.

volved in mining the co-location patterns and rules, we provide

hardness results and design an efficient algorithm which is

significantly faster than a baseline adapted from the state-

of-the-art; and (3) we conducted extensive experiments on

both real and synthetic datasets, which showed the superiority

of Fraction-Score as well as the efficiency of the proposed

algorithm (e.g., on the real datasets, our algorithm runs faster

than the baseline by 1-3 orders of magnitude).

The rest of the paper is organized as follows. In Section II,

we give the formal definition of Fraction-Score and confidence

measure and also introduce their properties. In Section III,

we adopt an Apriori-like algorithm for mining the co-location

patterns and rules and introduce an algorithm for computing

the support defined by Fraction-Score. In Section IV, we

present the experimental results and in Section V, we review

some related work. Finally, in Section VI, we conclude the

paper and provide some future research directions.

II. DEFINITIONS OF FRACTION-SCORE AND PROBLEM

We first introduce some notations in Section II-A and then

give an overview of Fraction-Score in Section II-B followed

by its formal definition in Section II-C, and then define the

co-location pattern/rule mining problem in Section II-D.

A. Notations

Let O be a set of n objects. Each object o ∈ O has

a location, denoted by o.λ, and also a set of (categorical)

labels (e.g., a shop brand name such as Starbucks). For ease

of presentation, we assume that each object o has only one

single label, denoted by o.t, but the concepts and algorithms

introduced in this paper can easily be applied to the general

case by making some duplications of each object with multiple

labels, each with one label. Let T be the set of all possible

labels of the objects, i.e., T = {o.t∣o ∈ O}.

Given two objects o and o
′
, we denote the distance between

them by d(o, o
′
). Depending on the applications, different

metrics such as Euclidean distance and Haversine distance

could be used for defining the distance. For ease of illustration,

we use Euclidean distance in this paper. Given a set S of

objects, we say that S is a neighbor set if the maximum

pairwise distance within S is bounded by a distance threshold

d, i.e., maxo,o’∈Sd(o, o
′
) ≤ d. Given an object o and a real

number r, we denote by Disk(o, r) the disk with its center

at the location of o and its radius equal to r.
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TABLE I
NOTATION TABLE

Notation Definitions

O the set of spatial objects
o a spatial object with its location o.λ and its label o.t

and in Section II, it usually denotes an object that
carries the label used for grouping row instances

o
′

a spatial object with its location o
′
.λ and its label

o
′
.t and in Section II, it usually denotes an object

that might be shared by multiple row instances across
groups

d the distance threshold for defining neighbor sets
T the set of all possible labels of the objects
C a label set (or a co-location pattern candidate)
t a label in C and in Section II, it usually denotes the

label used for grouping row instances

t
′

a label in C and in Section II, it usually denotes the
label that is carried by an object which may be shared
by row instances across groups

Let C be a label set. A set S of objects is said to be an

instance of C if S is a neighbor set and covers all labels in

C (i.e., C ⊆ {o.t∣o ∈ S}). An instance of C is said to be a

row instance of C if none of its proper subsets is an instance

of C. To illustrate, consider Figure 2. Suppose the label set

C is {×,◦}. Then, {A1, B1} is a row instance of C. But,

{A9, B2, B4} is not a row instance of C because its proper

subset {A9, B2} is an instance of C.

The main notations that are used throughout the paper are

summarized in Table I.

B. Overview of Fraction-Score

Same as the participation-based approach, Fraction-Score

groups the row instances of C by the objects with a given

label t in C, i.e., all row instances involving the same object

with label t are put in the same group. Note that this is

always possible since each row instance involves exactly one

object with the label t since otherwise, a subset of it will

also be a row instance, a contradiction. To solve the over-

counting problem when instances across different groups share

an object, says o
′
, with a label t

′
other than t, Fraction-

Score assigns to each group among all groups whose row

instances share o
′

a fraction of o
′
, which is equal to 1 divided

by the total number of such groups. That is, Fraction-Score

splits object o
′

into some equal fractions and distributes these

fractions to the objects based on which the groups of row

instances may share o
′
. Note that for each label other than t

in C, the object o (and essentially the corresponding group of

row instances) may receive multiple fractions since there are

multiple objects other than o in the group that might be shared

by other groups. We use an appropriate aggregation function

on these fractions which gives an aggregated one for the object

o (or equivalently the corresponding group) and then sum the

(aggregated) fractions of all groups to be the support. We note

that for each label t in C, we would have a grouping of the

row instances of C and correspondingly a support. To capture

the worst-case prevalence, we choose to use the minimum one

among all supports as the final support which would then be

normalized into [0, 1] by being divided by a constant.

C. Formal Definition of Fraction-Score

We start by defining some concepts related to fraction. Let

t be the label used for grouping the row instances of C.

We denote by Obj(t, C) the set of objects o which has the

label t and there are some row instances of C involving o.

Conceptually, each object o in Obj(t, C) corresponds to a

group of row instances of C (by label t). To illustrate, consider

Figure 2. Suppose C is {×,◦} and × is used for grouping the

row instances of C (we will use this setting as our running

example in this section unless otherwise specified). Then,

Obj(×, C) is {B1, B2, ..., B5} and each object in Obj(×, C)
corresponds to a group of C’s row instances.

Consider an object o in Obj(t, C) and another object o
′
with

its label different from t (i.e., o
′
.t ≠ t). If some row instances

in the group formed by o involve o
′
, i.e., o

′
is shared by this

group, we know that o must be located in Disk(o
′
, d) since

otherwise o and o
′
cannot be involved in the same row instance

of C. Thus, the potential number of groups that o
′

could be

shared by is bounded by the number of objects which are

located in Disk(o
′
, d) and have the label t. Motivated by this,

Fraction-Score splits o
′

into ∣Neigh(o
′
, t, d)∣ equal fractions

each equal to 1/∣Neigh(o
′
, t, d)∣ and then distributes each

fraction to an object in Neigh(o
′
, t, d), where Neigh(o

′
, t, d)

denotes the set of objects which are located in Disk(o
′
, d) and

carry the label t (note that o ∈ Neigh(o′
, t, d)). To illustrate,

consider Figure 2. We have Neigh(A1,×, d) = {B1} and

Neigh(A9,×, d) = {B2, B3, B4, B5}. Thus, a fraction 1 of

A1 is distributed to B1 and a fraction 1/4 of A9 is distributed

to each of B2 - B5. The intuition here is that A1 could be

shared by 1 group (one with the fraction 1) and A9 by 4
groups (each with an equal fraction of 1/4).

Now, we take the perspective of how object o receives frac-

tions of objects located nearby. Specifically, it would receive

a fraction of each of those objects o
′

with o ∈ Neigh(o′
, t, d).

Besides, the amount of fraction of an object o
′

that o receives,

denoted by Δobj(o, o
′
), is equal to 1/∣Neigh(o

′
, t, d)∣, i.e.,

Δobj(o, o
′
) = 1

∣Neigh(o′, t, d)∣
(1)

Consider the example in Figure 2. We have Δobj(B1, A1) =
1

∣Neigh(A1,×,d)∣
= 1, which means B1 receives a fraction 1

of A1. Similarly, Δobj(B2, A9) = 1
∣Neigh(A9,×,d)∣

= 1
4

, which

means B2 receives a fraction 1/4 of A9.

Object o may receive fractions from multiple objects, which

need to be aggregated. This is achieved in two steps. First,

we aggregate the fractions from those objects with the same

label using a sum function since the fraction of one object

could contribute to forming a row instance and that of another

object could also contribute to forming another row instance

within the same group (i.e., these fractions are complementary

to one another for forming row instances). Second, we bound

the aggregated fraction for a label by one unit since each group

cannot be counted as more than one unit (recall that the row

instances within each group share one single object with the

label used for grouping the row instances). In summary, the
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aggregated fraction of objects sharing a label t
′ ∈ C−{t} that

o receives (these objects form the set Neigh(o, t
′
, d)), denoted

by Δlabel(o, t
′
), is defined as follows.

Δlabel(o, t
′
) = min{ ∑

o’∈Neigh(o,t’,d)

Δobj(o, o
′
), 1} (2)

Consider the example in Figure 2. We have Δlabel(B1,◦) =
min{4, 1} = 1 since B1 receives 1 of each of A1 - A4.

Similarly, Δlabel(B2,◦) = min{ 1
4
, 1} = 1

4
.

Now, we are ready to introduce the formal definition of

Fraction-Score. Instead of materializing all row instances

of C and then grouping the row instances by the objects

with the label t explicitly as existing studies did [22], [14],

[13], we only maintain the grouping conceptually. Recall that

Obj(t, C) denotes the set of objects o which have the label t
and are involved in some row instances of C. For each object

o in Obj(t, C), we aggregate the fractions it receives w.r.t. all

labels t
′

in C − {t} using a min function since the minimum

fraction w.r.t. a label corresponds to the worst-case scenario

that one object is shared by multiple groups, and denote the

aggregated fraction o receives w.r.t. C by ΔlabelSet(o, C), i.e.,

ΔlabelSet(o, C) = min
t’∈C−{t}

Δlabel(o, t
′
) (3)

The above definition is for cases where ∣C∣ ≥ 2, and in

the case when C contains one label only, i.e., ∣C∣ = 1, we

simply define ΔlabelSet(o, C) = 1. Consider the example in

Figure 2. We have ΔlabelSet(B1, C) = Δlabel(B1,◦) = 1 and

ΔlabelSet(B2, C) = Δlabel(B2,◦) = 1
4

.

We then define the support given the label t for grouping

row instances, denoted by sup(C∣t), as the sum of the

aggregated fractions that the objects in Obj(t, C) receive w.r.t.

C, i.e.,

sup(C∣t) = ∑
o∈Obj(t,C)

ΔlabelSet(o, C) (4)

Consider the example in Figure 2. In this case, we

have Obj(×, C) = {B1, B2, ..., B5}. Then, sup(C∣×) =
ΔlabelSet(B1, C)+ΔlabelSet(B2, C)+...+ΔlabelSet(B5, C) =
1 + 4 ⋅ 1

4
= 2.

Note that depending on different choices of label t, we may

have different supports. To capture the worst-case prevalence,

we choose the label given which the support is the smallest.

Besides, we normalize the support to [0, 1] by dividing it the

maximum number of objects that have a specific label in T .

In summary, the support of a given label set C, denoted by

sup(C), is defined as follows.

sup(C) = mint∈C sup(C∣t)

maxt∈T ∣{o.t = t∣o ∈ O}∣
(5)

Consider the example in Figure 2 again. Consider that C =
{×,◦}. We have sup(C) = min{sup(C∣×),sup(C∣◦)}

9
= 2

9
.

It is worth mentioning that all row instances are cap-

tured and counted appropriately by Fraction-Score. Moreover,

Fraction-Score satisfies the anti-monotonicity property.

Lemma 1 (Anti-monotonicity property): Given two label sets

C
′

and C, where C
′

is a subset of C, we have sup(C
′
) ≥

sup(C).

Proof 1: The correctness relies on the fact sup(C
′
∣t) ≥

sup(C∣t) for any t in C
′

which could be verified using the

following facts: (1) Obj(t, C) ⊆ Obj(t, C
′
) for any t and

(2) ΔlabelSet(o, C) ≤ ΔlabelSet(o, C
′
) for any o ∈ Obj(t, C)

(which is based on the Equation (3) and the fact that C
′ ⊆ C).

Suppose C is co-location pattern. Then, “C
′ → C − C

′
”

would be a co-location rule candidate, where C
′

is a subset

of C and C − C
′

means the difference between C and C
′
.

We define the confidence of “C
′ → C − C

′
”, denoted by

conf(C
′ → C − C

′
), as follows.

conf(C
′
→ C − C

′
) = min

t∈C ′

sup(C∣t)

sup(C ′∣t)
(6)

Consider the example in Figure 2. The confidence of “{◦}→
{×}” is equal to 2

9
since sup({◦}) = 9

9
= 1 and

sup({×,◦}) = 2
9

.

D. Co-location Pattern/Rule Mining Problem

In this paper, we study the problem of finding co-location

patterns and rules on a database with spatial objects. Specif-

ically, given a set O of objects, each with a location and a

label, a distance threshold d for defining neighbor sets, and

two user parameters min-sup and min-conf , the problem is

to find all co-location patterns and rules, where a label set

C is a co-location pattern if sup(C) ≥ min-sup and two

labels sets C
′

and C with C
′ ⊆ C forms a co-location rule

“C
′ → C − C

′
” if conf(C

′ → C − C
′
) ≥ min-conf .

III. ALGORITHMS FOR CO-LOCATION PATTERN/RULE

MINING

Since the fraction-based prevalence measure satisfies the

anti-monotonicity property (Lemma 1), we design an Apriori-

like algorithm for computing all co-location patterns and rules

from O. The major idea is to iteratively construct co-location

pattern candidates and then verify them in an ascending order

of their sizes. Specifically, we use Ck (k ≥ 1) to denote the

set of co-location pattern candidates with the size of k and

Lk (k ≥ 1) the set of co-location patterns with the size of

k. The algorithm proceeds iteratively. At the first iteration,

it computes C1 as {{t}∣t ∈ T} and L1 as {{t}∣sup({t}) ≥
min-sup, t ∈ T}. At the k

th
iteration (k ≥ 2), it generates Ck

as {L ∪ L
′
∣L ∈ Lk−1, L

′ ∈ Lk−1, ∣L ∪ L
′
∣ = k} and Lk as

{C∣C ∈ Ck, sup(C) ≥ min-sup}. Here, Ck is generated by

combining any two patterns in Lk−1 only, and the rationale

is that by the anti-monotonicity property, it cannot happen

that an object set is in Lk while one of its subsets is not

in Lk−1. Based on each found co-location pattern C, it then

checks each possible candidate of co-location rule in the form

of “C
′ → C −C

′
” by enumerating all proper subsets of C as

C
′

and returns it as a co-location rule if its confidence is at

least min-conf .
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Algorithm 1 FractionComputation(O, T , d)

Input: an object set O, a label set T , a distance threshold d
Output: the aggregated fraction each object o ∈ O receives

w.r.t. each t ∈ T , i.e., Δlabel(o, t)
1: for all object o in O do
2: for all label t in T do
3: ∣Neigh(o, t, d)∣← 0
4: Δlabel(o, t)← 0
5: for all object o in O do
6: for all object o

′
in Disk(o, d) do

7: ∣Neigh(o, o
′
.t, d)∣ += 1

8: for all object o
′

in Disk(o, d) do
9: Δobj(o

′
, o)← 1/∣Neigh(o, o

′
.t, d)∣

10: Δlabel(o
′
, o.t) += Δobj(o

′
, o)

11: if Δlabel(o
′
, o.t) > 1 then

12: Δlabel(o
′
, o.t)← 1

As could be noticed, a key procedure involved in the above

Apriori-like algorithm is to compute for a given label set C
its support, i.e., sup(C). Different from the case on trans-

action databases [1], where the procedure could be finished

by scanning the transactions once and counting how many

transactions involve the label set, this procedure is non-trivial

in our scenario. Besides, none of the algorithms proposed

for this procedure in existing studies on mining co-location

patterns [20], [22], [14], [13] could be used for the procedure

based on Fraction-Score: (1) the procedure based on the

partitioning-based approach is the same as that on transaction

databases and thus it is not applicable, (2) that based on the

construction-based approach [20] is far from being applicable

here since it is based on some heuristics only and involves no

concepts of fraction, and (3) those based on the enumeration-

based and participation-based approaches [22], [14], [13] all

materialize and count all row instances of a given label set

while the support by Fraction-Score does not rely on counting

row instances of a given label set.

We note here that our main technical focus in this paper is

on computing the supports defined by Fraction-Score, which

is orthogonal to existing studies aiming for faster and more

scalable frequent pattern mining techniques [24], [25]. In

fact, these techniques could be easily adapted to our problem

since the supports defined by Fraction-Score satisfy the anti-

monotonicity property.

A. An Algorithm for Computing the Support Measure

Our algorithm consists of two procedures, namely Fraction-

Computation which collects the information of Δlabel(o, t)
for all objects o’s and all labels t’s and SupportComputation

which computes the support of a given label set C based on the

information that has been computed by FractionComputation.

FractionComputation. The pseudo-code of FractionCom-

putation is presented in Algorithm 1. First, it initializes

∣Neigh(o, t, d)∣ and Δlabel(o, t) for each object o ∈ O and

each label t ∈ T as 0 (lines 1-4). Second, for each object

o ∈ O, it proceeds as follows. It counts the number of

Algorithm 2 SupportComputation(C, O)

Input: a label set C and an object set O
Output: the support of C, i.e., sup(C)

1: sup(C)←∞
2: for all label t in C do
3: sup(C∣t)← 0
4: for all object o with the label t do
5: if there is a row instance of C which involves o then
6: sup(C∣t) += FractionAggregation(O, C, o)

7: if sup(C∣t) ≤ sup(C) then
8: sup(C)← sup(C∣t)
9: Return sup(C)

Algorithm 3 FractionAggregation(O, C, o)

Input: an object set O, a label set C, and an object o in O
Output: the aggregated fraction object o receives w.r.t. C,

i.e., ΔlabelSet(o, C)
1: ΔlabelSet(o, C)←∞
2: for all label t in C − {o.t} do
3: if Δlabel(o, t) < ΔlabelSet(o, C) then
4: ΔlabelSet(o, C)← Δlabel(o, t)
5: Return ΔlabelSet(o, C)

objects in Disk(o, d) which have a label t (lines 6-7). Then, it

distributes a fraction 1/∣Neigh(o, o
′
.t, d)∣ of o to each object

o
′
in Disk(o, d) (lines 8-9) and updates the fraction o

′
receives

w.r.t. o.t (line 10). Finally, it bounds the fraction an object

receives w.r.t. a label by 1 (lines 11-12). A straightforward

implementation of this algorithm would occupy O(∣O∣ ⋅ ∣T ∣)
memory for storing the information Δlabel(o, t). For better

storage efficiency, we adopt a maintenance-on-demand strat-

egy, i.e., only those Δlabel(o, t)’s with t ∈ ⋃o’∈Disk(o,d){o
′
.t}

are computed. In this way, the memory usage would be

much smaller than O(∣O∣ ⋅ ∣T ∣) since the objects within

the neighborhood of an object usually involve not that many

labels.

SupportComputation. The pseudo-code of the SupportCom-

putation procedure is presented in Algorithm 2. First, it

initializes sup(C) to be infinity (line 1). Then, it tries to

use different labels in C for grouping the row instances of C
conceptually (line 2). For a specific label t, it first initializes

sup(C∣t) as 0 (line 3) and then adds up for each object o
which has the label t and is involved in some row instances

of C the fraction it receives w.r.t. C, which is computed by the

“FractionAggregation” procedure (whose details are presented

in Algorithm 3), as sup(C∣t) (lines 4-6). At the end, it returns

the smallest sup(C∣t) for a label t ∈ C as sup(C) (lines 7-9).

The “FractionAggregation” procedure, which computes for

a object o in O the fraction it receives w.r.t. a label set C, i.e.,

ΔlabelSet(o, C), is presented in Algorithm 3. First, it initializes

the fraction o receives w.r.t. C as ∞ (line 1). Second, for

each label t in C − {o.t} (line 2), it updates ΔlabelSet(o, C)
if Δlabel(o, t) < ΔlabelSet(o, C) (lines 3-4). Finally, it returns

ΔlabelSet(o, C) (line 5).
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B. RI: Is Object o Involved in a Row Instance of C
There is one issue in Algorithm 2 that remains unsolved,

namely, the step to decide whether there is a row instance

of a given label set C which involves an object o (line 5 in

Algorithm 2). We denote by RI the problem corresponding

to this remaining issue. Unfortunately, the RI problem is NP-

hard, which we present in the following lemma.
Lemma 2: The RI problem, which is to decide for given

label set C and an object o whether there exists a row instance

of C involving o is NP-hard.
Proof 2: We prove by reduction from the existing Collective

Spatial Keyword Query with the Diameter cost function (Dia-

CoSKQ) problem [19], [6] which is NP-hard as follows.
First, we give the formal definition of the decision problem

of Dia-CoSKQ. Given a set D of point-of-interests (POIs)

where each POI p has a location p.λ and a set of keywords

p.ψ and a query q with a query location q.λ, a set of query

keywords q.ψ, and a real number c, the decision problem of

Dia-CoSKQ is to decide whether there is a set S of POIs

in D such that S covers all the query keywords (i.e., q.ψ ⊆
∪p∈Sp.ψ) and the diameter of S ∪ {q}, which corresponds to

the maximum pairwise distance of S ∪ {q}, is at most c.
Second, we transform a given decision problem instance of

Dia-CoSKQ to a RI problem instance as follows. We construct

a set O of objects by creating for each POI p in D ∣p.ψ∣
objects each with p.λ as its location and a keyword in p.ψ
as its label and another object o with its location as q.λ and

its label as a fictious one f . We create a set C containing

those labels corresponding to the query keywords in q.ψ and

also t, i.e., C = q.ψ ∪ {t}. Lastly, we set d to be c. The RI
problem is to decide whether there exists a row instance of C
which involves o. Clearly, the above transformation step is in

polynomial time.
Third, it could be verified that the decision problem of Dia-

CoSKQ is equivalent to that of RI, which finishes the proof.

C. A Filtering-and-Verification Approach for RI
A naive method for RI is to enumerate all row instances

of C and check whether there exists one involving object o.

However, as has been known in existing studies [33], [32],

[31], the procedure of materializing all row instances of a

given label set is very expensive. In this paper, we develop a

filtering-and-verification approach for RI, which involves two

phases, namely a filtering phase and a verification phase. The

filtering phase is to solve RI for easy cases and the verification

phase for all remaining cases. The details are introduced as

follows.
1) Filtering Phase: The filtering phase is motivated by the

fact that the remaining issue RI could be easy to solve with

some information re-used and/or in certain cases:

• Filter 1. Check if there exists a row instance S of C,

which was found previously when answering another RI
instance for a different object o

′
and label set C, such

that o is involved in S. If so, return “yes”. To support

this checking, we could keep track of all those objects

that are involved in row instances that have been found.

• Filter 2. Check if all objects in Disk(o, d) together carry

all labels in C. If no, return “no” (since all possible sets

of objects in Disk(o, d) correspond to subsets of the set

containing all objects in Disk(o, d) and thus they cannot

carry all labels in C either).

• Filter 3. Check if all objects in Disk(o, d/2) together

carry all labels in C − {o.t}. If so, return “yes” (since

there exists a set of objects in Disk(o, d/2) including o
that corresponds to a row instance of C).

2) Filtering Phase: We propose three methods for the

verification phase as follows.

Dia-CoSKQ-Adapt. This method is based on the close rela-

tionship between RI and Dia-CoSKQ. In the proof of the NP-

hardness of RI, we show that any decision problem instance of

Dia-CoSKQ could be transformed to a RI problem instance.

Here, we further show that an arbitrary instance RI could be

answered by solving a corresponding optimization problem

instance of Dia-CoSKQ. Specifically, given an instance of RI
which involves a set O of spatial objects, a set C of labels,

a real number d, and one object o in O, we consider a Dia-

CoSKQ problem which is to find a set S of POIs from a

given set D of POIs which covers all query keywords of a

given query q and has the diameter of S ∪ {q} the smallest,
where the set D of POIs includes one POI for each object o
in Disk(o, d) with its location as o.λ and its set of keywords

as {o.t} and the query q has its location at o.λ and its set of

query keywords as C − {o.t}. It could be verified that if the

diameter of S ∪ {q} is at most d, the answer of the RI is

“yes”, and otherwise, the answer is “no”. Based upon this, we

can utilize the exact algorithm proposed in [19] for RI. Note

that we could do slightly better by adopting an early-stopping
strategy that whenever a set S with the diameter of S ∪ {q}
at most d is found, it returns “yes” immediately.

Combinatorial-Search. We notice that enumerating all row

instances of C is more than necessary for answering the

question of RI. In fact, it would be sufficient to find one

row instance of C which involves o if it exists to answer

the question. Besides, there are two constraints that could be

utilized for refining the search space. First, it is safe to focus

the search on those objects which are near o, specifically,

those in Disk(o, d), since those objects outside this disk have

their distances from o larger than d and cannot be involved in

the same row instance together with o. Second, it is enough

to consider those sets of objects each corresponding to a

combination of objects with different labels in C since other

sets of objects either cannot not carry the labels in C or have

proper subsets which carry all the labels in C. Based upon the

above two constraints, we design an algorithm for searching a

possible row instance of C involving o if there exists one as

follows.

• Step 1. it finds all objects in Disk(o, d) by performing

a range query with its center at o and its radius of d.

• Step 2. it indexes the objects found in Step 1 using an

inverted list which stores the objects using different lists

each corresponding to a label and contains all objects
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with this label.

• Step 3. it tries all combinations of objects from those

lists corresponding to the labels in C − {o.t} and for

each combination S which contains ∣C − {o.t}∣ objects

it checks whether the maximum pairwise distance of S
is at most d. If such a combination is found, it stops by

returning “yes”, and otherwise, it returns “no”.

Optimization-Search. In Combinatorial-Search, there is a step

which is to enumerate all combinations of some objects in

Disk(o, d) indexed by their labels in C
′ = C − {o.t} and

see whether there exists a combination with the diameter at

most the value d. An alternative for this step is to compute

the set of objects in Disk(o, d) which covers all labels in C
′

and has the smallest diameter and then compare this diameter

against d to answer the question, i.e., if this diameter is at

most d, it returns “yes”, and otherwise, it answers “no”. In the

literature, the problem of finding a set objects which covers

a given set of labels/keywords and has the smallest diameter

has been studied [34], [35], [12] and is called the m-closest
keywords (mCK) problem. Based upon this, we can utilize the

exact algorithm proposed in [12] for mCK to do this step, and

the resulting method corresponding to Optimization-Search.

Similar to the Dia-CoSKQ-Adapt method, an early-stopping

strategy could be adopted here.

Time Complexity Analysis. Since the verification phase

dominates the time cost of the approach, we focus on the

verification phase only. The complexity of Dia-CoSKQ-Adapt

is O(n1 ⋅ (Crange + k
∣C∣−2
3 ⋅ ∣C∣

2
)), where n1 (n1 << ∣O∣)

is the number of objects that carry a label t ∈ C − {o.t},

k3 (k3 << ∣O∣) is the number of objects shared by results

of range queries. The complexity of Combinatorial-Search

is O(Crange + k1 + k
∣C∣
2 ), where Crange is the cost of

performing the range query in Step 1, k1 (k1 << ∣O∣) is

the number of objects returned by the range query in Step

1, and k2 (k2 << ∣O∣) is maximum number of objects in

an inverted list constructed in Step 2. While the worst-case

time complexity is exponential, the algorithm is feasible in

practice with the help of index structures such as inverted lists

and also because of the problem nature (e.g., the exponent

∣C∣ is small in most cases), and this will be verified by

the experiments. The complexity of Optimization-Search is

O(Crange + k1 + n1 ⋅ k∣C∣−2
1 ).

IV. EMPIRICAL STUDIES

A. Experimental Set-up

Datasets. We use both real and synthetic datasets. The

real dataset is the set of POIs of the United Kingdom

(http://www.pocketgpsworld.com). Each POI has a textual de-

scription (e.g., supermarket, bank, cinema) and a GPS location.

It consists of 182,334 objects with 36 types (i.e., labels).

The synthetic datasets are generated by following existing

studies [13], [22] as follows. Step 1 (Label Set Generation):

We generate Nco loc subsets of labels one by one, and for each

one, we construct it by sampling a certain number of labels

randomly where the number follows a Poisson distribution

TABLE II
PARAMETERS AND SETTINGS

Parameter Settings
λ2 40, 50, 60, 70, 80

mclump 1, 2 ,3 ,4 ,5
moverlap 1, 5, 10, 15, 20
min-sup 0.2, 0.3, 0.4, 0.5, 0.6

with mean λ1. We then construct moverlap maximal co-

location patterns (i.e., label sets) from each set of labels

constructed by augmenting it with one more random label.

Step 2 (Instance Construction): For each maximal co-location

pattern, we construct a certain number of instances where the

number follows a Poisson distribution with mean λ2, each by

creating mclump objects for each label in this instance and

putting them inside a random grid cell with size d × d from

the spatial frame of size D×D. Step 3 (Noise Injection): We

generate (rnoisy label ×n1) noisy labels, where n1 is equal to

the number of non-noisy labels (i.e., those generated in Step 1).

We then construct (rnoisy num×n2) noisy instances based on

the noisy labels similarly as we did based on non-noisy labels

(i.e., via Step 2), and put each noisy instance at a random grid

cell, where n2 is equal to the number of non-noisy instances

(i.e., those generated in Step 2). We set Ncoloc, λ1, D, d,

rnoisy label, and rnoisy num as 20, 5, 10
6
, 10, 0.5, and 0.5,

respectively. By following existing studies [13], [22], we set

the other parameters as shown in Table II (with the default

ones in bold). Note that the numbers of objects and labels in

the synthetic datasets depend on the parameter settings. Under

the default settings, the dataset contains 94, 028 objects and

462 labels.

Algorithms. We test our Filtering-and-Verification approach.

For comparison, we adapt the “Join-less” algorithm from [31]

for two reasons. First, it is the state-of-the-art algorithm

for co-location pattern mining. Second, though originally de-

signed for participation-based measure, it involves procedures

of computing the row instances of given label set, which

is shared by our Fraction-Score measure. Specifically, the

adapted algorithm works as follows. First, it generates all

star neighborhoods. Second, for each label set C, it finds all

the row instances from the corresponding star neighborhoods.

Third, to check whether an object o is involved in C, it checks

whether o exists in one of the row instances of C.

All algorithms were implemented in C/C++ and are

memory-based. All experiments were conducted on a Linux

platform with a 2.66GHz machine and 32GB RAM.

B. Experiment Results

1) Effectiveness Results on Synthetic Datasets: We com-

pare Fraction-Score with the other approaches in terms of

how close the supports measured are from the ground-truths.

Note that we did not include the enumeration-based approach

here since it is used for defining the confidence of a rule

candidate only as mentioned in Section I. Besides, we use

synthetic datasets only for the study here since it allows the

flexibility to generate the datasets such that the ground-truths

of supports could be estimated accurately. For this particular
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experiment, we set the parameter mclump, i.e., the number

objects to be generated for a label, to be a random number

from a uniform distribution of [1, 5] instead of a fixed number

as we do for other experiments, and the purpose here is to test

the robustness of support measures. Specifically, we estimate

the ground-truth support of a pattern as the maximum number

of disjoint row instances of the pattern. Based on the way

we generate the synthetic datasets, this is close to the number

of instances of a label (which follows Pois(λ2)) with the

smallest mclump values among the labels in the pattern. For

normalization, we then divide this number by the maximum

number of objects that have a specific label in T .

Figure 3 shows the results of patterns with top-10 supports,

where the x-axis corresponds to the patterns (in a descending

order of their supports) and the y-axis shows the actual

supports. According to these results, the supports by Fraction-

Score are closest to the ground-truths among all approaches.

This could probably be explained by the fact that the row

instances that overlap with each other are not counted multiple

times when collecting ground-truths, which is reasonable,

while the participation-based approach would count those

row instances which share some objects with their labels

different from the one used for grouping the row instances

as if they share nothing. The partitioning-based approach

under-measures the supports since it misses some of the row

instances, and the construction-based approach misses some

of the row instances due to its heuristic nature.
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To look deeper into the supports defined by Fraction-Score,

we are interested in knowing how the fractions in Fraction-

Score are distributed. We consider two types of patterns, one

corresponds to those patterns with size at least 2 (since those

with size 1 are trivial) and the other corresponds to those

patterns that are maximal (i.e., no subsets of them are patterns).

Figure 4 shows the results, where the x-axis shows different

ranges of fraction and the y-axis shows the percentage of

groups (or the objects by which they are formed) that have

their factions fall in a range. According to these results,

around one-fifth of the groups have their fractions equal to 1

(which means that these groups are counted as an entire unit

of prevalence) and the remaining groups have their fractions

smaller than 1 (which means that these groups are counted

fractionally only by Fraction-Score, but entirely by existing

support measures such as the participation-based approach).

Besides, for the type of maximal patterns, the percentages

of those smaller fractions (e.g., those below 0.5) are higher

than those for the patterns with size at least 2, and this is

probably because the maximal patterns are usually of larger

sizes, leading to a higher chance that their row instances

overlap with each other.

2) Effectiveness Results on Real Datasets: In this part, we

study the effectiveness of different support measures on real

datasets. Specifically, we ran our algorithm and found the co-

location patterns with top-5 supports (with the setting of d =
1000m). Table III presents the patterns, each with its supports

computed using other approaches also shown. According to the

results, we know that the supports by the participation-based

approach are very close to 1 (which is mainly because this

measure has a normalization step of dividing by the number of

occurrences of the label but not the maximum among all labels

as Fraction-Score does) and the supports by the construction-

based and partitioning-based approaches are slightly smaller

than those by Fraction-Score (which is mainly because the

former ones miss some row instances while Fraction-Score

captures all instances appropriately).

TABLE III
PATTERNS IN REAL DATASET

Pattern Fraction-
Score

Partici-
pation

Partit-
ioning

Constr-
uction

{church, restaurant} 0.7017 0.9613 0.6164 0.6829

{church, gas station} 0.5908 0.9832 0.5076 0.5595

{restaurant, gas station} 0.5132 0.9577 0.4324 0.4856

{church, restaurant, gas station} 0.5027 0.9552 0.3952 0.4659

{ATM, church} 0.4301 0.9093 0.4025 0.4280

(a) church (green dots)
and restaurant (purple dots)

(b) recreation (orange dots) and
supermarket (blue dots)

Fig. 5. Distributions of the objects in the real dataset

Besides, we visualize the objects involving the labels in

the first pattern C1 ={church, restaurant} in Figure 5 (a) and

those involving the labels in another pattern C2 ={recreation,

supermarket} for comparison, where the side length of each

cell is d = 500m. We can observe that the pattern C1

occurs 3-4 times more than C2, which matches our result

of sup(C1) ≈ 3.7 ⋅ sup(C2). Consider the co-location rule

“church → restaurant”. The confidence of the rule is 0.7362,

which matches the distribution shown in Figure 5(a) that

around 70% of churches have one restaurant nearby. Consider

another co-location rule “supermarket → recreation” with

confidence 0.6025. This also matches the distribution shown

in Figure 5(b) that around two-thirds of the supermarkets have

a recreation nearby.
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3) Results on the Filtering-and-Verification Approach:
Filtering phase. In this part, we show the results reflecting

the effectiveness of the filtering phase. Consider Figure 6(a),

where we vary min-sup and measure the percentage of RI
instances that are solved by each of the three filters in the

filtering phase and also that by the verification phase. These

results show that more than 80% of RI instances could be

solved in the filtering phase, and thus less than 20% RI
instances would be left in the verification phase. Besides, we

notice that when min-sup increases, the filtering power of

Filter 1 increases while that of Filter 2 decreases. The former

is because the number of large co-location patterns decreases

when min-sup increases and as a consequence, it is more

likely to find a row instance of a label set, which benefits

Filter 1. And the latter is because when min-sup increases, it

becomes rare for Disk(o, d) to not cover all labels of a label

set (which is of a small size) and thus the filtering power of

Filter 2 decreases. The results on the real datasets provide

similar clues and thus they are omitted due to page limit.

Filter 1
Filter 2

Filter 3
Verificaiton

 0

 20

 40

 60

 80

 100

0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

min-sup

Filter 1
Filter 2

Filter 3
Verificaiton

 0

 50

 100

 150

 200

0.2 0.3 0.4 0.5 0.6

R
un

ni
ng

 ti
m

e 
(s

)

min-sup

(a) Percent of No. of RI (b) Running time

Fig. 6. Effectiveness of the filtering phase (Synthetic datasets)

Verification phase. We conducted experiments on both real

and synthetic datasets for studying the performance of the

three methods proposed for the verification phase. According

to the results, Combinatorial-Search runs the fastest consis-

tently under all settings. This could probably explained by the

fact that the exact algorithms employed in Dia-CoSKQ-Adapt

and Optimization-Search were originally designed for some

optimization problem (i.e., Dia-CoSKQ and mCK problems)

while RI is a decision problem. These exact algorithms

involve extra steps for finding an optimal solution and thus

they take more time. Therefore, we focus on Combinatorial-

Search in the verification phase for the remaining experiments.

With Combinatorial-Search used in the verification phase, the

breakdown of the running time is shown in Figure 6(b).
4) Filtering-and-Verification vs State-of-the-art: In this

part, we show the results reflecting the performance compari-

son between Filtering-and-Verification and the state-of-the-art,

Join-less, in terms of running time and memory consumption.

Figure 7 shows the results on the real dataset where we

vary min-sup. According to Figure 7(a), the running times

of both algorithms decrease when min-sup increases. This

is because fewer co-location patterns would be found when

min-sup increases. Besides, our Filtering-and-Verification ap-

proach runs much faster than the Join-less method, which

could be explained by the fact that the former only needs

to check whether some objects are involved in any of the row

instances while the latter needs to find all row instances of each

co-location pattern. According to Figure 7(b), our Filtering-

and-Verification approach consumes significantly less memory

than the Join-less method, which is because the former only

maintains the fractions received by each object for each label

while the latter needs to store all row instances of each co-

location pattern.
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Fig. 7. Effect of min-sup (Real dataset)

The results on synthetic datasets when we vary min-sup
provide similar clues and thus they are omitted.

Figure 8 shows the results on synthetic datasets where we

vary λ2. According to Figure 8(a), the running times of both

algorithms increase when λ2 increases. This is because when

the average size of the row instances increases, more objects

need to be checked. Our Filtering-and-Verification approach

outperforms the Join-less method, and the gap increases with

λ2. According to Figure 8(b), the memory consumptions

of both algorithms increase with λ2. This is because the

datasets would involve more objects when λ2 increases. The

memory usage of our Filtering-and-Verification approach is

much smaller than that of the Join-less method consistently.
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Fig. 8. Effect of λ2 (Synthetic datasets)

Figure 9 shows the results on synthetic datasets where

we vary mclump, where the results of the Join-less method

for mclump = 5 are missed which is simply because it ran

for a very long time, i.e., more than 6 hours (this strategy

applies for all the following results). According to Figure 9(a),

the running times of both algorithms increase when mclump

increases. This is because the number of co-location patterns

increases when mclump increases. Besides, our Filtering-and-

Verification approach runs faster than the Join-less method

by orders of magnitude. This is because the latter needs to

enumerate all row instances for each co-location pattern, which

is very time-consuming (and memory-consuming). This also

shows that the Filtering-and-Verification approach is scalable
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to mclump while the Join-less method is not. According to

Figure 9(b), the memory consumptions of both algorithms

increase when mclump increases, which is simply because the

total number of objects increases with mclump.
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Fig. 9. Effect of mclump (Synthetic datasets)

Figure 10 shows the results on synthetic datasets when we

vary moverlap. According to Figure 10(a), the running times

of both algorithms increase when moverlap increases and our

Filtering-and-Verification approach outperforms the Join-less

method. According to Figure 10(b), the memory consumption

of our Filtering-and-Verification approach is consistently much

smaller than that of the Join-less method.
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Fig. 10. Effect of moverlap (Synthetic datasets)

5) Scalability Test: We generated 5 synthetic datasets from

the real dataset for scalability test. Specifically, for each object

o in the original dataset, we create n new objects each with

location set to be a random location from the original dataset

by following the distribution and label set to be o.t. We vary

the number n from 1 to 5 and obtain synthetic datasets with

sizes {180k, 360k, 540k, 720k, 900k}. Figure 11 shows the

results, according to which, we see that the Join-less method

cannot scale to large datasets, e.g., it ran for more than 2 days

on dataset of size about 180k (and thus its plots are missing),

and our Filtering-and-Verification method could scale up on

large datasets of size 1M.

Conclusion on Results. Our Fraction-Score measures the

prevalence of co-location pattern candidates more properly

than existing ones. Three filters in the filtering phase are

effective (e.g., they filter more than 80% RI instances), and

among three methods in the verification phase, Combinatorial-

Search works the best. Besides, our Filtering-and-Verification

approach works consistently better than the state-of-the-art in

terms of both running time and memory consumption.
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Fig. 11. Scalability test

V. RELATED WORK

The co-location pattern mining problem has been studied

extensively using different support measures [22], [20], [14],

[13], [33], [32], [31]. In [36], the authors proposed to improve

the efficiency of co-location pattern mining by adopting a

multi-way join approach. In [15], the authors developed a

FP-tree based algorithm for the co-location pattern mining

problem. Motivated by the fact that it is expensive to generate

row instances of a size (k + 1) label set via join the row

instances of two size k label sets, in [33], [32], [31], the

authors proposed some partial join and joinless techniques

which materialize some transactions of spatial objects such

that those row instances within transactions could be generated

without the join process [22], but for those row instances

across different transactions, they still use the join process.

Some other studies related to the co-location pattern min-

ing problem are reviewed as follows. In [17], the authors

aimed to find strong association rules where a rule indicates

certain association relationship among a set of spatial and

possibly nonspatial predicates. In [27], the authors presented a

framework for mining co-location patterns for extended spatial

objects, e.g., polygons and line strings. In [8], the authors

studied the problem mining regional (or local) co-location

patterns. In [4], the authors developed a new method to effi-

ciently process co-location pattern queries using materialized,

improved candidate pattern instance tree (iCPI-tree). In [26],

the problem studied is to find regions each represented by a

set of cells linking with each other where two labels co-occur

more frequently than globally. In [9], it was studied to find

regions each represented as a set of spatial objects by using

a clustering-like algorithm where the interestingness score

of a region is based on how much the objects representing

the region have their continuous values co-related with each

other. In [5], the authors proposed to find zonal or local co-

location patterns which represent subsets of label types that are

frequently located in a subset of space (i.e., zone). In [18],

the authors studied the problem of summarizing co-location

patterns. In [3], the problem studied was to find statistically

significant co-location patterns based on hypothesis testing,

where some models are assumed which limits its application

scope. In [30], [23] and [29], [2], [21], Map Reduce based

methods and parallel algorithms on GPU were developed for

the co-location pattern mining problem, respectively. In [11],
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[10], it was studied to find co-location patterns where a set

C of spatial labels corresponds to a pattern if the clusterings

each based on the objects with a spatial label in C have at

least a certain degree of overlap which is captured by the

area intersected by the polygons formed based on the clusters.

In [16], it performs clustering on the set of spatial labels

where the similarity between two labels is measured with some

spatial statistical functions [7]. In [28], the authors studied the

co-location pattern mining problem with the consideration of

distance decay effects and also the direction information.

VI. CONCLUSION

In this paper, we studied the co-location pattern mining

problem on spatial objects with categorical labels. We showed

that existing support measures suffer from various weaknesses

and thus we proposed a new measure called Fraction-Score

which quantifies the prevalence of pattern candidates properly.

We developed an Apriori-like algorithm for mining co-location

patterns based on Fraction-Score, which involves a fundamen-

tal operation of deciding whether an object is involved in

a row instance of a label set. We proved that the problem

of performing the operation is NP-hard and then developed

a filtering-and-verification algorithm for the operation. We

conducted experiments on both real and synthetic datasets,

which verified that our Fraction-Score measures the prevalence

better than existing approaches and also our algorithm runs

significantly faster than the adaption of the state-of-the-art. In

the future, we plan to study the co-location pattern mining

problem on spatio-temporal data, i.e., a time dimension is

taken into consideration, and this is interesting since some

co-location patterns occur only at certain time stamps.
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