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Abstract

With the increasingly available indoor positioning technologies, indoor
location-based services (LBS) are becoming popular. Among indoor
LBS applications, indoor routing is particularly in demand. In the lit-
erature, there are several existing studies on indoor keyword-aware
routing queries, each considering different criteria when finding an opti-
mal route. However, none of these studies explicitly constraint the
time budget for the route. In this paper, we propose a new prob-
lem formulation TIKRQ that considers the time needed for a user to
complete the route, in addition to other criteria such as static cost
and textual relevance. A set-based search algorithm and effective prun-
ing strategies are proposed as the foundations of processing TIKRQ.
To further enhance the practicability of TIKRQ, we study the exten-
sions of TIKRQ and propose efficient solutions. First, we present two
TIKRQ variants, namely preferred visiting order and absence of a
target point. Second, we present a session-based TIKRQ that keeps
track of and refines a user’s routing results when the user changes
the query parameters. We conduct extensive experiments on both
real and synthetic datasets to verify the efficiency of our proposals.
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1 Introduction

With recent developments in indoor positioning technologies and the
widespread use of smartphones, indoor location-based services (LBS) [1]
are becoming increasingly popular. Typical indoor LBS related applications
include finding interested indoor objects and locations [18, 38, 42, 44, 45],
indoor navigation and route planning [12, 25, 34–36], and indoor movement
pattern mining [19, 20]. Among them, indoor route planning is particularly in
demand, which assists users in planning a route satisfying their preferences,
especially in an unfamiliar and large indoor environment like an airport or a
shopping mall.

Consider that Alice has just passed the security check in the airport. As
she has 90 minutes before the boarding time of the flight, she wants to buy
a coffee, some souvenirs and a new charging cable. She can issue an indoor
routing query from a source point (her current location) to a target point (i.e.,
the boarding gate), and specify the preferences by some keywords (e.g., coffee,
souvenir, and charging cable). The query should return a route that passes
through a shop that sells coffee, a souvenir shop, and a shop that sells charging
cables. Most importantly, she should be able to complete the route within the
90-minute time constraint.

There are several existing studies on indoor keyword-aware routing
query [12, 34–36], each of which considers different criteria when finding the
result, including route distance, keyword relevance, and static cost. These
existing route planning queries focus on minimizing the total length of the
route that visits all requested keywords. However, none of these studies consid-
ers the time constraint as a hard constraint. In this paper, we propose a new
problem formulation that is capable of taking all these criteria into account.

In practice, measuring the time needed to complete a route is much more
reasonable and comprehensive than focusing on the route distance. First,
instead of giving a concrete maximum walking distance (e.g., 500m), a user
might feel more friendly to give the time she/he is willing to walk (e.g., 5
minutes), especially in some time-sensitive situations (e.g., as in our example,
the user has to arrive at the boarding gate before a particular boarding time).
Second, the distance metric overlooks the distances we travel by other means,
such as elevators in the shopping malls and Automated People Mover (APM)
in the airports. For example, the APM in Hong Kong International Airport
needs 10 minutes to arrive at the farthest midfield concourse1. While these
travel means do not incur any walking distance, the time needed on them
should not be simply neglected when planning the route. A recent work [12]
converts a time constraint into a distance constraint by multiplying the former
by a maximum indoor walking speed, which, however, cannot handle these
cases properly. Third, the waiting time of the shops (e.g., queuing time for a
restaurant, or checkout time needed for a supermarket) should also be taken
into account when returning a route to the user.

1https://en.wikipedia.org/wiki/Hong Kong International Airport Automated People Mover

https://en.wikipedia.org/wiki/Hong_Kong_International_Airport_Automated_People_Mover
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Fig. 1: Running Example

Following a previous work [35], we also consider the static cost of shops in
this paper. The static cost of a shop could refer to the average price of the
products in the shop, or an estimated crowdedness of the shop. It could also
be a composite cost of different criteria, such as price, popularity, and rating.

In this paper, we propose a new problem formulation that takes the route’s
time needed into account, rather than the (walking) distance. Specifically, we
formulate a time-constrained indoor keyword-aware routing query (TIKRQ).
A TIKRQ requires a source point ps, a target point pt, a set QW of query
keywords and a time constraint ∆Max . It returns the top-k routes from ps to
pt such that each of their total time needed is less than ∆Max and their costs
are the minimum compared to those of the others. In our setting, the cost of a
route captures the static cost and the textual relevance of the indoor partitions
with respect to QW .

Figure 1 shows our running example, which consists of a floor plan of a
shopping mall with two floors, and a table listing the shops’ static costs and
waiting time. Suppose a user will meet her friends in 20 minutes. During her
spare time, she wants to buy a coffee and a charging cable for her phone. She
then issues a query with her current location as the source point ps (in v23 on
2/F), the meeting location as the target point pt (in v10 on 1/F), two query
keywords coffee and charging cable, and a route’s time constraint of 20 minutes.
Both routes R and R′ are possible solutions of the query. Route R visits costa
(which is a coffee shop) and apple (which sells charging cables), and uses the
elevator e1 to reach 1/F from 2/F, while route R′ visits starbucks (which is
another coffee shop) and T-Mobile (which also sells charging cables) and goes
from 2/F to 1/F by the staircase s1. Suppose the total walking time of R and
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R′ is 5 and 4 minutes, respectively, and the elevator takes 1 minute to go from
2/F to 1/F. The total time needed to complete R and R′ is 5+ 1+ 8+ 4 = 18
minutes and 4 + 5 + 3 = 12 minutes, respectively. In this case, both R and R′

can be completed within 20 minutes, while R should be more desirable to the
user, since R has a total static cost of 2 + 6 = 8 which is much smaller than
that 8 + 3 = 11 of R′.

In addition, we develop a concept of unique partition set to improve the
diversity of the top-k results. Also, we organize and distinguish three types
of indoor keywords to better capture the semantics of the query keywords.
To answer the TIKRQ, we propose an algorithm based on a novel set-based
search strategy to search for the top-k routes. Efficient pruning techniques and
computation strategies are also designed to improve performance.

Compared to the existing studies [12, 34–36], our proposed TIKRQ (1)
provides the flexibility for users to specify the time constraint of the routes, (2)
is more comprehensive as it also considers the static cost of the partitions, (3)
better organizes the keywords in an indoor setting by introducing an additional
category-word, and (4) adopts the concept of unique partition set to improve
the diversity of the top-k results.

To further enhance the practicability of TIKRQ, we study two extensions of
TIKRQ. First, we present two TIKRQ variants, namely preferred visiting order
and absence of a target point, to help users to specify special requirements
when issuing a TIKRQ. In particular, the two variants can capture the cases
that a user wants the routes to visit the query keywords in a particular order,
and a user does not have a specific target point for the routes, respectively.
To handle the two variants, we adapt the set-based search strategy to find the
top-k routes.

Second, we formulate a session-based TIKRQ that keeps track of and refines
a user’s routing results when the user changes the parameters. In some scenar-
ios, a user may want to update the query parameters of a TIKRQ and obtain
the new results. In the previous example that the user has 90 minutes free
time before the boarding time of the flight, if the flight is delayed and thus the
boarding time is postponed, the user’s time budget could be relaxed accord-
ingly. Thus, on top of the TIKRQ, we formulate the session-based TIKRQ
to accommodate such application needs. In particular, we analyze all possible
parameters’ update, and design algorithms for four cases.

This journal version extends our conference paper [5] with substantial new
technical contributions. First, we propose two variants of TIKRQ, namely
preferred visiting order and absence of a target point, which improve the prac-
ticability of our problem (Section 5). Second, we propose the session-based
TIKRQ problem that maintains and refines the result of TIKRQ when the
user changes the parameters (Section 6). In particular, we analyze all possible
scenarios thoroughly and design algorithms for four cases. Third, we exper-
imentally evaluate the new proposals (Sections 7.1.4 to 7.1.9). Fourth, we
conduct additional experiments on a real dataset to evaluate all our proposals
(Section 7.2).

The contributions of this work are summarized as follows.
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• We formulate the time-constrained indoor keyword-aware routing query
(TIKRQ) that takes the routes’ time needed into consideration. We also
propose a concept of unique partition set to diversify the top-k routes.
(Section 2)

• We propose a keyword organization for indoor keywords, and a method to
compute textual relevance for routes. (Section 3)

• We design a set-based search algorithm with effective pruning techniques to
resolve TIKRQ. (Section 4)

• We present two variants of TIKRQ, and adapt the set-based search algorithm
to resolve both of them. (Section 5)

• We propose a session-based TIKRQ, analyze all possible scenarios and design
algorithms for four cases. (Section 6)

• We conduct extensive experiments and case studies to evaluate the proposed
techniques. (Section 7)
In addition, we review the related work in Section 8 and conclude the paper

in Section 9.

2 Problem Definition

2.1 Preliminaries

Table 1 shows the frequently used notations in this paper.

Table 1: Notations

Notation Description

v, d, p Partition, door, and point in an indoor space
v.cost, v.waitT ime Static cost and waiting time of a partition v

e Transport in indoor space (e.g., an elevator)
w A word in a partition

QW The set of query keywords
KPS(R) The set of key partitions on route R
PC(R) Partition cost of route R
γ(R) Time cost of route R
ρ(R) Textual relevance of route R

cost(R) Route cost of route R
CKP A set of candidate key partitions
S A key partition set

s = (q,TopKRoutes) A session-based TIKRQ
Θc The parameter changed in a session-based TIKRQ

A partition and a transport are the basic building blocks in an indoor space.
A point is located inside a partition or a transport. In an indoor routing, one
needs to move from one door to another through their common partition or
transport. Following [27], we use the mapping to capture the indoor topology:
Given a door di, we use D2P⊐(di) and D2P⊏(di) to denote the set of partitions
and transports that one can enter and leave through di, respectively.
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Given a partition vk or a transport ek, and two different doors di and dj ,
the intra-partition door-to-door distance from di to dj is defined as

δd2d(di, dj) =


|di, dj |E , if vk ∈ D2P⊐(di) and vk ∈ D2P⊏(dj)

0, if ek ∈ D2P⊐(di) and ek ∈ D2P⊏(dj)

∞, otherwise

In the case that di and dj are in the same partition (say vk), one can enter the
partition from di and leave by dj . We measure the distance between di and dj
by Euclidean distance. Other distance metrics such as obstacle distance can
also be adopted here. Following [12], we handle the special case of di = dj ,
which happens when one needs to enter a partition due to its keyword relevance
but then leave it from the same door for further routing, as follows. We set
δd2d(di, di) to be the double of the longest non-loop distance one can reach
inside the partition from the door di. In the case that di and dj are in the
same transport, we simply regard the door-to-door distance from di to dj as
zero. To reflect the practical time needed to pass a transport, we assign each
transport a waiting time, as to be detailed in Section 3.1.

Given a point pi, we use v(pi) to denote the partition or transport that
contains pi. Given a partition vi, we use P2D⊐(vi) and P2D⊏(vi) to denote the
set of doors through which one can enter and leave the partition vi, respectively.
Similarly, given a transport ei, we use E2D⊐(ei) and E2D⊏(ei) to denote the
set of doors which one can enter and leave the transport ei, respectively. Given
a door dk and a point pi, the point-to-door distance and door-to-point distance
are defined as

δpt2d(pi, dk) =


|pi, dk|E , if dk ∈ P2D⊏(v(pi))

0, if dk ∈ E2D⊏(v(pi))

∞, otherwise

δd2pt(dk, pi) =


|dk, pi|E , if dk ∈ P2D⊐(v(pi))

0, if dk ∈ E2D⊐(v(pi))

∞, otherwise

When the context is clear, we use δ∗(xi, xj) to indicate the distance from
a point/door xi to a point/door xj .

2.2 Problem Definition

Definition 1 (Route [12]). A route R = (xs, di, ..., dn, xt) is a path through
a sequence of doors from point/door xs to xt. A route is a complete route
if xs and xt are the source and target points, respectively. Otherwise, it is a
partial route.



Springer Nature 2021 LATEX template

Time-Constrained Indoor Keyword-aware Routing: Foundations and Extensions 7

We can easily obtain the partitions and transports that a route R passes
using the aforementioned indoor topological mappings.

Consider the partial route R on 2/F in Figure 1, we have R =
(ps, d26, d22, d25, d25, d2). We know that R passes v23, v22, v25 and v20 since

R = (ps
v23−−→ d26

v22−−→ d22
v20−−→ d25

v25−−→ d25
v20−−→ d2).

We use the term relevant partition [12] to refer to a partition that covers
ps, pt or a subset of query keywords. Given a route R, a key partition of R
is a partition that R has been through and that has the maximum keyword
relevance (to be given in Definition 6) for at least one query keyword. We use
KPS (R) to denote the set of key partitions in R. Considering the example in
Figure 1 with query keywords starbucks and apple, partitions v10, v11, v14, and
v23 are relevant partitions and KPS (R) = {v11, v14}.

Definition 2 (Partition Cost). We define the partition cost of a route as the
sum of the static cost of its key partitions.

PC(R) =
∑

v∈KPS(R)
v.cost

Note that any monotonic function can be used to model a route’s partition
cost. In this paper, we use the sum function for conciseness.

Definition 3 (Route Cost). We define the cost of a route as the linear
combination of its partition cost and textual relevance, i.e.,

cost(R) = α · PC (R)

PCmax · |QW |
+ (1− α) · (1− ρ(R)) (1)

where α ∈ [0, 1] is a user parameter, PCmax is the maximum partition cost
in the indoor venue, and ρ(R) is the textual relevance of R (to be defined in
Section 3.2).

The parameter α controls the weighting between the partition cost and
textual relevance, and can be tuned according to the user needs. A smaller α
puts a larger weight on route’s textual relevance, while a larger α focuses more
on the partition cost. We vary and evaluate this parameter in Section 7.1.2.

We define our problem as follows.

Problem 1 (Time-Constrained Indoor Keyword-aware Routing). Given a
source point ps, a target point pt, a set QW of query keywords, a time
constraint ∆Max and an integer k, a Time-Constrained Indoor Keyword-
aware Routing Query TIKRQ(ps, pt, QW,∆Max , k) returns k complete routes
with the smallest route cost, and each such a route R from ps to pt (i.e.,
R = (ps, ..., pt)) has a time cost γ(R) less than the time constraint (i.e.,
γ(R) < ∆Max ).



Springer Nature 2021 LATEX template

8 Time-Constrained Indoor Keyword-aware Routing: Foundations and Extensions

Above, γ(R) captures the time needed for R to complete the given routing
query (to be defined in Section 3.1). We say that a route is a feasible route
if it satisfies the time constraint. Therefore, the TIKRQ is to find k feasible
routes with minimum cost.

We prove the NP-hardness of the problem as follows.

Theorem 1. The TIKRQ problem is NP-hard.

Proof We prove by reduction from the Orienteering Problem [13] which is NP-hard.
Given a graph with a set of nodes and a set of edges, where each node is associated
with a score, and each edge is associated with a travel time, the goal of the Orien-
teering Problem is to find a route that visits some nodes from a starting point ps to
a target point pt, such that the total collected score through the route is maximized
and the total time spent is within a given time budget L.

The problem can be reduced to TIKRQ problem as follows. For each node, we cre-
ate a partition vi and a category ci. All these categories form the query keyword set.
Each partition vi is associated to the corresponding category ci, and the static cost is
set to 0. Then, we construct two partitions, corresponding to the source point and the
target point, respectively. For each constructed partition, we set δ∗(xi, yi) = 0, where
xi and yi are any points or doors inside the partition. For each edge, we construct
a transport that connects the corresponding pair of constructed partitions with the
edge’s travel time as its waiting time. We set ∆Max = L. The above transformation
can be done in polynomial time. Clearly, the problem of solving the TIKRQ prob-
lem is equivalent to that of the Orienteering Problem. Thus, the TIKRQ problem is
NP-hard.

□

To ensure the resulting routes are meaningful, we use the following two
principles of indoor routing [12].

Principle of Regularity. Unlike traditional outdoor routing algorithms [2,
46] that exclude loops in a route to avoid endless route searching, we allow
a regular route in the indoor space to have a loop of doors in some cases.
Consider the example in Figure 1, a user who wants to visit partition v14
must enter and leave d14, producing a partial route (..., d14, d14, ...). The prin-
ciple of regularity disqualifies a route that contains a loop without any key
partitions in the loop. That is, we exclude loops in a route between any
two key partitions. For example, for a query with the keyword starbucks,
R′ = (ps, d26, d26, d23, sd2, sd1, d14, d14, pt) is not allowed since v22 visited by
the loop (d26, d26) is not a key partition of the query.

Principle of Diversity. The concepts of diversifying top-k results [30, 47]
and prime route [12] inspire us to avoid homogeneous routes in our routing
results. We propose a concept of unique partition set. Specifically, for each
of the k resulting routes, its key partition set must be unique. That is, for any
two resulting routes R and R′, we must have KPS (R) ̸= KPS (R′).
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Table 2: Four Example Routes from ps to d2
Each Covering costa and citibank

R1 (ps
v23−−→ d26

v22−−→ d22
v20−−→ d21

v21−−→ d21
v20−−→ d25

v25−−→ d25
v20−−→ d2)

R2 (ps
v23−−→ d26

v22−−→ d22
v20−−→ d25

v25−−→ d25
v20−−→ d21

v21−−→ d21
v20−−→ d2)

R3 (ps
v23−−→ d23

v20−−→ d25
v25−−→ d25

v20−−→ d21
v21−−→ d21

v20−−→ d2)

R4 (ps
v23−−→ d23

v20−−→ d21
v21−−→ d21

v20−−→ d25
v25−−→ d25

v20−−→ d2)

Consider Figure 1 as an example. Suppose a user wants routes from ps to
d2 while covering two keywords QW = {costa, citibank} in the route. Sev-
eral possible routes are listed in Table 2. For ease of illustration, we insert
the partitions that connect two consecutive items in the route. We can see
that KPS (R1)=KPS (R2)=KPS (R3) = KPS (R4)= {v23, v21, v25, v20}. The
four routes pass the same set of key partitions with different orders and dif-
ferent partial routes in-between. Thus, only one of the four routes should be
included in the query result.

Note that this requirement provides a more diversified result than a prime
route [12], as the unique partition set is more restrictive than the prime route.
In particular, the concept of prime route only requires SRP(R) ̸= SRP(R′),
where SRP(R) denotes the sequence of relevant partitions in R. In our exam-
ple, R1 and R2 (or R3 and R4) could be in the prime route query result at
the same time, since SRP(R1)=⟨v23, v21, v25, v20⟩ is different from SRP(R2) =
⟨v23, v25, v21, v20⟩.

3 Time Cost And Textual Relevance

In this section, we detail the formulation of the time cost γ(R) in Section 3.1
and the textual relevance ρ(R) in Section 3.2.

3.1 Time Cost

In this paper, we consider two types of time for a route R.

Travelling Time. The travelling time of a route R, denoted by ttravel(R),
refers to the time needed for a user to complete R. As discussed in Section 1,
both walking and taking a transport incur travelling time, and we model them
as follows. Assuming the average human walking speed swalk is 5km/hour2,
we can easily compute the travelling time on walking as the walking distance
divided by the walking speed.

To model the travelling time on taking transport, consider a user taking an
elevator for illustration. To take an elevator, the total journey time includes
waiting (outside the elevator) and travelling (inside the elevator). The estima-
tion of this waiting time can be based on the average value of previous records,
which is beyond the scope of this paper. This paper assumes a fixed waiting

2We use a universal walking speed in this paper for ease of illustration, but the proposed method
can be easily adapted to the walking speed tailored for partitions.
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time (e.g., 30 seconds), rather than a distribution, for ease of illustration. Sim-
ilar to computing the walking time, the travelling time on an elevator is the
height of travel from one floor to another divided by the elevator’s speed.

Based on the above, given two doors di and dj that connect to a partition
v or a transport e, the time needed to travel from di to dj is defined as

γ(di, dj) =


δd2d(di,dj)

swalk
, if v ∈ D2P⊐(di) and v ∈ D2P⊏(dj)

|di,dj |
se

+ ewait, if e ∈ D2P⊐(di) and e ∈ D2P⊏(dj)

∞, otherwise

where |di, dj | is the actual distance of the two doors in e, se is the moving speed
of the transport, and ewait is the waiting time of the transport. For simplicity,
we assume that the start point and target point are located in partitions only3.

The travelling time of R = (ps, di, . . . , dk, pt) can be computed as follows.

ttravel(R) =
δ∗(ps, di)

swalk
+

n−1∑
k=i

γ(dk, dk+1) +
δ∗(dn, pt)

swalk

Partition Time. The partition time of a route R, denoted by tpart(R), is
the sum of time spent in the key partitions where the user stays to fulfill her
purposes implied by the keywords, i.e.,

tpart(R) =
∑

v∈KPS(R)
v.waitTime

where v.waitTime denotes the waiting time of the partition v. Similar to the
transport’s waiting time, we assume a fixed value for the waiting time in each
partition.

Time Cost. Based on the above, we define the time cost of a route by the
following cost function.

Definition 4 (Time Cost). Given a route R, the time cost of R, denoted by
γ(R), is defined as the sum of the travelling time and the waiting time of R.

γ(R) = ttravel(R) + tpart(R) (2)

3.2 Textual Relevance

Keywords in Indoor Space. In the literature, an identity word (i-
word) [12] identifies the specific name of a partition (e.g., starbucks, apple), and
a thematic word (t-word) [11, 12] refers to a tag relevant to that partition

3We do not consider the extreme case that the source and target points are located in the
transport, but our technique can easily support it.
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(e.g., coffee, laptop). In addition, we employ a category word (c-word) that
specifies the type of the partition (e.g., coffee shop, supermarket). A partition
can be associated with one c-word and one i-word, but a set of t-words. For
example, a partition in a shopping mall is associated with a c-word coffee shop,
an i-word starbucks and t-words coffee, mocha, latte; another partition can be
associated with a c-word electronics, an i-word apple, and t-words smartphone,
laptop, headphone. Note that it is possible to extend our organization to sup-
port one partition associated with multiple or hierarchical c-words, which is
left for future work.

Insufficiency of Existing Setting. The previous work [12] differentiates
two types of keywords associated with indoor partitions. In particular, they
assumed that two partitions having the same i-word must have the same set
of t-words. However, this assumption over-simplifies the case. For example,
depending on the shop’s size and location, two starbucks can have different
menus. A smaller one might not have some products (e.g., cakes and juices)
for sale, while the one close to a train station sells more grab-and-go foods.
As another example, some ATMs offer different currencies in cash, while some
others do not. Compared to the assumption and the limitations in the organi-
zation of indoor space keywords in [12], our keyword organization, which we
introduce below, is more general and comprehensive.

We assume that the three sets of words are disjoint for ease of illustration.
Given a partition vi, a P2I mapping P2I(vi) maps vi to its associated i-word,
and a P2T mapping P2T (vi) maps vi to its associated t-words. Given an i-
word wi, an I2C mapping I2C(wi) maps wi to its associated c-word, and an
I2P mapping I2P (wi) maps wi to the partitions associated with it. Given a t-
word wt, a T2P mapping T2P (wt) maps wt to the partitions associated with
it. Given a c-word wc, a C2I mapping C2I(wc) maps wc to the associated
i-words.

To better represent the real-world setting, we maintain P2I as a many-
to-one mapping and I2P as a one-to-many mapping such that a partition
can be associated with one i-word, and each i-word can be associated with
multiple partitions. For example, there could be multiple starbucks in a mall.
We maintain P2T and T2P as two many-to-many mappings, meaning that each
partition can be associated with multiple t-words and vice versa. Besides, we
maintain I2C as a many-to-one mapping and C2I as a one-to-many mapping.
Figure 2 shows an example of the organization of indoor space keywords.

Given the organization described above, we are now ready to introduce the
calculation of keyword relevance between the query keywords and a route as
follows.

Keyword Relevance Computation. Given a set QW of query keywords,
we first match each query word w ∈ QW to the candidate partitions for
facilitating the routing afterwards.

Definition 5 (Candidate Partitions). Given a query keyword w ∈ QW , its
candidate partitions CP(w) is represented as a set of entries each of which is in
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i-word set c-word sett-word set Partition

ID

Fig. 2: Keyword Mappings in Indoor Space

the form of (vi, rs), where vi is the matching partition and rs is the relevance
score between vi and w. We discuss different cases based on the type of w as
follows.
• Case 1 (w is a c-word): All partitions associated with the matching i-words

in C2I(w) are matched with rs = 1.
• Case 2 (w is an i-word): All partitions associated with the i-word w are

matched with rs = 1. To enrich the result, we also include partitions asso-
ciated with other i-words. In particular, all partitions associated with an
i-word w′

i such that I2C(w′
i) = I2C(w) are matched with rs = 0.14.

• Case 3 (w is a t-word): All partitions associated with the matching t-word w
are matched with rs = 1. All partitions vj associated with t-words t′i such that

t′i ∈
⋃

vi∈T2P (w) P2T (vi) are matched with rs =
P2T (vj)∩

⋃
vi∈T2P (w) P2T (vi)

P2T (vj)∪
⋃

vi∈T2P (w) P2T (vi)

based on the Jaccard Similarity.

Compared to [12], our definition has an extra case that w is a c-word, and
it uses a different scoring scheme to handle the case that w is an i-word, which
is designed based on our new keyword organization.

Definition 6 (Keyword Relevance). Given a route R and a query keyword
wQ, we define the keyword relevance of wQ w.r.t. R as the maximum rs of
vi ∈ R as follows.

rel(R,wQ) = max
(vi,rs)∈CP(wQ)|vi∈R

CP(wQ).rs

Definition 7 (Textual Relevance). Given a route R, we define the textual
relevance ρ(R) as the sum of keyword relevance of all query keywords as
follows.

ρ(R) =
(∑

wQ∈QW
rel(R,wQ)

)
/|QW |

where |QW | is the normalization term to make ρ(R) fall in [0, 1].

4Any small value can be used here as long as the original i-word w has a higher score. The
routes with w will have higher rankings than those with w′

i.
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Consider our example in Figures 1 and 2. Suppose the query keywords
are coffee and charging cable (both keywords are t-words). R passes the key
partitions v11 and v25, which is associated with charging cable (i.e., v11 ∈
T2P (TW1)) and coffee (i.e., v25 ∈ T2P (TW3)), respectively. Thus, we have
ρ(R) = 1+1

2 = 1. If the query keywords are changed to starbucks (which is
an i-word) and electronics (which is a c-word), v11 and v25 are still the key
partitions of R, and we have ρ(R) = 0.1+1

2 = 0.55 since I2P (v11) = costa
is of the same category coffee shop with starbucks, and I2P (v25) = apple is
associated with the category electronics.

4 TIKRQ Processing Framework

In this section, we propose our Set-Based Search Algorithm to find the resulting
routes. Before we present the algorithm, we extend the concept of skeleton
distance [41] to skeleton time which will be used in our pruning rules. Given
two indoor items xi and xj , the skeleton time γ(xi, xj)L can be used as a lower
bound of the time needed from xi to xj .

γ(xi, xj)L =



|xi,xj |E
swalk

, if xi and xj are on the same floor

min

(
minsdi∈SD(xi),

sdj∈SD(xj)

|xi,sdi|E+δs2s(sdi,sdj)+|sdj ,xj |E
swalk

,

minedi∈ED(xi),
edj∈ED(xj)

(
γ(xi, edi)L+

γe2e(edi, edj) + γ(edj , xj)L

))
, otherwise

where γ(xi, xj)L is the time needed to walk in Euclidean distance from xi to
xj if they are on the same floor. Otherwise, we find the time needed for the
fastest path that goes through the staircase doors (e.g., sdi ∈ SD(xi) and
sdj ∈ SD(xj)) or the transport doors (e.g., edi ∈ ED(xi) and edj ∈ ED(xj))
to reach xj from xi.

4.1 Set-Based Search Algorithm (SSA)

We give the following observation which provides a clue to developing an
efficient algorithm for TIKRQ.

Observation 1 (Partition Set). Given a set S of key partitions, any route R
formed by the partitions in S has the same partition cost and textual relevance.

With a slight abuse of notations, we denote the partition cost and textual
relevance of a set S of key partitions by PC(S) and ρ(S), respectively. It is
easy to see that both metrics are not affected by the order of visiting, and thus
PC(S) = PC(R) and ρ(S) = ρ(R) for any routeR formed by the key partitions
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in S. Based on this observation, we propose a set-based search algorithm SSA
as follows.

High Level Idea. This algorithm searches for the resulting routes by focusing
on the partition sets, as shown in Figure 3. For each set S of key partitions, we
check whether any feasible route R exist (i.e., γ(R) < ∆Max ). If such a route
exists, the top-k results are updated accordingly.

Cross-iteration computation strategy

Find candidate 
key partition 
set (Step 1)

Find a key 
partition set 

(Step 2)

Maintain 
top-k

results

No

Lemmas 1 and 2

Feasible 
route exist?

(Step 3)

Yes
Query

Pruning 2Pruning 1 Lemma 3Pruning 3

Fig. 3: Flow of Set-based Search Algorithm

The advantage of SSA is that it separates the time needed of a route
R from its cost part. Thus, effective pruning techniques based on partition
cost and textual relevance can be applied to filter out unpromising routes
quickly, without performing the time-consuming route search and expansion.
Compared to the graph-based algorithms in [12], SSA maps multiple routes
into one set, resulting in a much smaller search space. Note that this search
strategy naturally conforms with our requirement of the unique partition set,
which improves the diversity of our top-k results.

Specifically, SSA maintains a list TopKRoutes storing the current top-k
best feasible routes, and curKCost storing the cost of the k-th route found so
far. It has four major steps.

• Step 1 (Candidate Key Partition Set Finding): Find the candidate key par-
tition set (CKP) of candidate key partitions from the set of query keywords
QW .

• Step 2 (Key Partition Set Finding): Find a set S of key partition set from
CKP to be the key partition set of a route R to be found.

• Step 3 (Feasible Route Finding): Find a feasible route R which starts from
ps, passes all key partitions in S and ends at pt (if any), and update
TopKRoutes with R correspondingly if cost(R) < curKCost .

• Step 4 (Iterative Step): Resume Step 2 until all key partition sets are
traversed.
The above search strategy is based on the set of all possible combinations

of CKP . A straightforward implementation of this strategy would enumerate
2|CKP| key partition sets, and each set would have |S|! possible routes. This
is prohibitively expensive in practice. Thus, we need a careful design to prune
the search space effectively. In the following, we discuss the pruning techniques
enjoyed by SSA.
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4.1.1 Pruning at Step 1

Pruning Rule 1 (Candidate Key Partitions). For a partition vi in a key
partition set S, if its time cost lower bound LB(γ(vi)) > ∆Max , then vi can be
pruned, where

LB(γ(vi)) = γ(ps, vi, pt) + twait(vi)

γ(ps, vi, pt) = min
di∈P2D⊐(vi),
dj∈P2D⊏(vi)

(
γ(ps, di)L +

δd2d(di, dj)

swalk
+ γ(dj , pt)L

)
4.1.2 Pruning at Step 2

Firstly, we utilize an inverted file indexed by QW to organize CKP to avoid
generating sets that contain ‘unnecessary’ key partitions. That is, only the
partition sets with each partition contributing to a query keyword will be
considered. Note that in this way, we also bound the size of each set S to |QW |.

Secondly, given a subset S′ of the key partition set S to be generated, we
impose a cost lower bound costLB(S|S′) of S, as follows.

costLB(S|S′) = α
PC(S′)

PCmax · |QW |
+ (1− α)(1− ρ(S′) + (|QW | − |S′|)

|QW |
)

Lemma 1 (Set Cost). Let S be a key partition set and S′ ⊂ S, we have
cost(S) ≥ costLB(S|S′).

Proof Since |S| = |QW | > |S′| and each key partition has its relevance rs ≤ 1 for
each query keyword, we have ρ(S) ≤ ρ(S′) + (|QW | − |S′|). It is easy to see that
PC(S′) ≤ PC(S). Thus, we have cost(S) > costLB(S|S′). □

The above Lemma suggests that if costLB(S|S′) > curKCost , we can
terminate the enumeration on S′.

Thirdly, we sort the partitions vi in each inverted list in ascending order
of f(vi), where

f(vi) = α
PC(vi)

PCmax
− (1− α) vi.rs

Lemma 2 (List Ordering). Let vi and vj be two key partitions in an inverted
list with f(vi) ≤ f(vj), S′ be a key partition set containing vi and S′′ =
S′ \ {vi} ∪ {vj}. Then, we have costLB(S|S′) ≤ costLB(S|S′′).

Proof Consider the set S′
o = S′ \ {vi}. It can be proven that costLB(S|S′

o) ≥
costLB(S|S′) − f(vi)

|QW | . Since S′′ = S′
o ∪ {vj}, we have costLB(S|S′

o) +
f(vj)
|QW | ≥

costLB(S|S′′). As f(vi) ≤ f(vj), we have costLB(S|S′) ≤ costLB(S|S′′). □
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By ordering the inverted lists in this way, we can impose an early stopping
condition: If costLB(S|S′) > curKCost , we can terminate the enumeration of
the remaining partitions in the list.

Fourthly, some key partition sets can be excluded by considering their
upper bound of total waiting time.

Pruning Rule 2 (Set Waiting Time). Given a key partition set S, we
upper bound S’s total waiting time of partitions in S,

∑
v∈S v.waitTime, by

waitTimemax , which is defined as follows.

waitTimemax = ∆Max − γ(ps, pt)L

Note that waitTimemax can be pre-computed because γ(ps, pt)L is identical
for all queries with the same pair of ps and pt.

4.1.3 Algorithm SSA

We design SSA as shown in Algorithm 1. Specifically, it maintains a list
TopKRoutes storing the k best-known routes found so far (line 2). Then, it
finds the set of candidate key partitions CKP (line 4), by utilizing Pruning 1.
Next, it performs an iterative process as follows (lines 5 to 13). It iterates
through each key partition set S, and if S passes our lower bound cost checking
(Lemma 1) and waiting time checking (Pruning 2), it finds the feasible route R
of S by findFeasibleRoute() (to be detailed in Algorithm 2). If such a route
R exists, we update the TopKRoutes by R. The algorithm terminates when
all sets have been processed. The TopKRoutes is then returned as the result.

Algorithm 1 SSA (ps, pt, QW , ∆Max , k)

1: if δ(ps, pt) > ∆Max then return ∅
2: TopKRoutes ← ∅
3: waitTimemax ← ∆Max − δ(ps,pt)

swalk

4: CKP ← ∪wQ∈QWCP(wQ) ▷ Step 1
5: for each possible subset S of CKP do ▷ Step 2
6: if costLB(S) > curKCost then continue
7: if

∑
v∈S v.waitTime > waitTimemax then continue

8: R← findFeasibleRoute(S, ps, pt,∆Max ) ▷ Step 3
9: if R ̸= ∅ then

10: update TopKRoutes with R
11: curKCost ← cost of the k-th route in TopKRoutes
12: end if
13: end for
14: return TopKRoutes

One remaining issue is that given a set S, how to efficiently find the feasible
route, if it exists. We present an algorithm for that in the following section.
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4.2 Feasible Route Search

Given a set S of partitions, we want to find a feasible route from ps to pt
that passes all partitions in S. A naive approach is to try all permutations of
the partitions in S. Instead, we propose a best-first search algorithm that can
find the feasible route efficiently. It returns the feasible route R if it exists.
Otherwise, it returns ∅.

Before we present the algorithm, we introduce some pruning techniques
to speed up the feasible route search. First, not all partial routes need to be
explored. In particular, given a partial route R = {ps, ..., dk}, we compute its
lower bound time cost and introduce a pruning as follows.

Pruning Rule 3 (Route Time Cost). A partial route R = {ps, ..., dk} can be
pruned if γLB(R) = γ(R) + γ(dk, pt)L ≥ ∆Max .

Second, not all doors in each key partition need to be considered when
expanding a partial route. Given a key partition v′, a partial route R =
{ps, ..., dy−1, dy} that has expanded to v′, if both dy−1 and dy are connected
to v′, R′ can be safely discarded. Formally, we have the following lemma.

Lemma 3 (Route Pruning). Consider a partial route R′ = {ps, .., dy−1 , dy},
where dy−1, dy ∈ P2D⊐(v

′). There exists a route R that connects to v′ and is
faster than R′.

Proof Consider another partial route R = {ps, .., dy−1}. It is easy to see that γ(R′) ≥
γ(R) since γ(R′) = γ(R) +

|dy−1,dy|E
swalk

. □

Based on the above Lemma, a partial route R′ = {ps, .., dy−1, dy} can be
pruned if dy−1, dy ∈ P2D⊐(v

′).
Algorithm 2 presents the findFeasibleRoute algorithm. Specifically, a min-

imum priority queue Q (initialized in line 1) is used to handle the order of
route expansion. An element in Q is a four-tuple (v,R, γLB , S

′) that stores the
local information of the current partial route, where v is the last partition that
R reaches, R = {ps, di, ..., dk} is the partial route that has been expanded so
far, γLB is the lower bound time cost of R ∪ {pt}, and S′ is the set of remain-
ing partitions that have not been explored by R yet. The elements in Q are
sorted in ascending order of |S′|.

The algorithm initializes a route R0 by ps and puts it into Q (lines 2 to 3).
It then performs the expansion iteratively (lines 4 to 23). In each iteration, it
pops out the element (v,R, γLB , S

′) with the smallest |S′| from Q (line 5), and
check if S′ is empty. If so, all key partitions in (the original) S is covered by R,
and it connects R from dk to pt to form a complete route R′. If γ(R′) < ∆Max ,
it returns R′ immediately as R′ is a feasible route (lines 7 to 11). Otherwise,
it expands the current partial route to cover a key partition v′ ∈ S′ (lines 12
to 21). For each dy ∈ P2D⊐(v

′), it finds the fastest route from dk to dy, checks
if the route passes the checking (Lemma 3). If so, it generates a new route R′
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Algorithm 2 findFeasibleRoute (S = (v1, v2, ..., vn), ps, pt, ∆Max )

1: Initialize a priority queue Q
2: R0 ← (ps)
3: Q.push(v(ps), R0, 0, S)
4: while Q is not empty do
5: (v,R, γLB , S

′)← Q.pop()
6: dk = R.tail
7: if S′ = ∅ then
8: find fastest route from dk to pt
9: R′ ← append (dk, ..., pt) to R

10: if γ(R′) ≤ ∆Max then return R′

11: end if
12: for each v′ ∈ S′ do
13: for each dy ∈ P2D⊐(v

′) do
14: find fastest route from dk to dy
15: if dy−1 ∈ P2D⊐(v

′) then continue
16: R′ ← append (dk, ..., dy) to R
17: γ′

LB ← γ(R′) + γ(dy, pt)L
18: if γ′

LB ≤ ∆Max then
19: Q.push(v′, R′, γ′

LB , S
′ \ {v′})

20: end if
21: end for
22: end for
23: end while
24: return ∅

by appending the fastest route to R, and pushes it to Q if it passes the time
constraint checking (Pruning 3). The expansion continues until all elements in
Q have been processed. It returns ∅ if no feasible route can be found.

Cross-Iteration Computation Strategy. To further speed up the algo-
rithm, we have the following strategy to store and reuse the information
computed in the current iteration for future iterations.

Consider an iteration. Given two doors di and dj that we have processed,
we maintain the fastest partial route information from di to dj in a global
hashmap Hfpr, to avoid re-computation in the future iterations. In particular,
when we find the fastest route from di and dj (line 14), we check whether
key = (di, dj) exists in Hfpr. If so, we can append the saved route to the
current route directly. Otherwise, we proceed to search for the route. Once
such a route is found, it is inserted into Hfpr.

Moreover, we maintain another global hashmap Hin to store those (partial)
routes that are found to be infeasible. To illustrate, consider an example with
S = {v1, v2, v3}. If we found that there does not exist a feasible (partial) route
R that contains ⟨ps, v1, v2⟩ when we process S, we add key = ⟨v1, v2⟩ into Hin.
Then, when we find the feasible route for another set S′ = {v1, v2, v4}, we do
not need to consider R that contains ⟨ps, v1, v2⟩ since it must also be infeasible.
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Formally, we perform a checking when we search for the feasible route for a
set S as follows. If any route Rin is in Hin, we know that Rin is infeasible
and return ∅ immediately. Note that Hin can be updated accordingly when
we check the feasibility of new partial routes to a remaining key partition.
If no new partial route satisfies the time constraint checking, Rin is inserted
into Hin.

4.3 Time Complexity

The time complexity of SSA is dominated by the key partition sets processing
part (lines 5 to 21 in Algorithm 1). Let |KPS | be the number of key partition
sets processed in SSA and θ be the time complexity of executing one iteration.
The time complexity of SSA is O(|KPS | · θ). In practice, we have |KPS | <<
2|CKP| since it utilizes the pruning techniques.

Consider θ. It is dominated by the time cost of executing the
findFeasibleRoute() method (i.e., Algorithm 2). Let dmax be the maximum
number of doors a partition has, and m be the cost for computing the fastest
route from a door to another. The time cost is O(|S|! · |S| · d2max ·m), where
|S| = |QW |, since the number of possible permutations of S is O(|S|!),
and the time complexity of computing a complete route for one permu-
tation is O(|S| · d2max · m). In summary, the time complexity of SSA is
O(|KPS | · |S|! · |S| · d2max ·m).

The time complexity of SSA is exponential with the number of query key-
words, i.e., O(2|QW |). This is because the algorithm needs to iterate different
partition sets, where each set size is at most |QW |. It also has a O(|QW |!)
component, which is because it needs to iterate different visiting order of the
partitions in the partition sets to form a route. Note that in practice the run-
ning time should be much faster since our cross-iteration computation strategy
can help to reduce the computation needed.

5 Variants of TIKRQ

In practice, the users might have some special requirements when specifying a
query. To support such requirements, we propose two variants of TIKRQ. In
this section, we also briefly discuss how to handle the variants.

5.1 Preferred Visiting Order

One may want to specify a preferred visiting order of the shops. In this case,
the query keywords are ordered. For example, the users might want to first
buy a coffee to drink along the route. Formally, given a list of ordered query
keywords QW = ⟨w1, w2, . . . , w|QW |⟩, each returned route R ∈ TopKRoutes
visits the key partitions according to the ordering of QW .

To handle this variant, we modify our algorithm as follows. In Step 3 of
SSA (Algorithm 1), instead of using an arbitrary key partition ordering, we
follow the visiting order to find the feasible route. Let v′i ∈ S denote the key
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partition corresponding to the query keywords wi. We amend the loop in line
12 of Algorithm 2 as follows. Given a key partition set S and a partial route R
that has visited m key partitions in S, where 0 ≤ m < |QW |, we only need to
expand R to the (m+ 1)th key partition that covers the query keyword wi+1

next to wi in the specified visiting order in QW . The other steps remain the
same.

5.2 Absence of A Target Point

A user may not have a dedicated target point when issuing a routing query.
For example, a user may want to buy something without a clear idea of where
to stop in a shopping mall. This can be modelled by having pt = ∅ in the
original TIKRQ. In this case, each resultant route R ∈ TopKRoutes ends at
the last visited key partition instead of a well-defined pt. We can extend our
algorithms to handle this variant easily by making the following two changes.
First, we define δ(ps, pt) = 0 and γ(dy, pt)L = 0. Second, we skip lines 8 and 9
in Algorithm 2.

The two variants above are orthogonal to each other, and thus they can be
applied at the same time. It is easy to see that neither variant affects the time
complexity of SSA (Algorithm 1).

6 Session-based TIKRQ

The TIKRQ and its varations discussed in the previous sections are one-off.
They do not consider the user’s status after returning the resultant routes. In
this section, we extend the TIKRQ into a session-based scenario, which keeps
track of the user’s routing and refines the ongoing route when needed.

A session is started when the user issues a new TIKRQ, and continues until
the user explicitly terminates it (e.g., when the user finishes the route). During
the session, the user follows the route from ps to pt. In some situations, as the
parameters change during the session, the user might want to update the query
parameters and obtain the corresponding updated result routes. For example,
the time constraint ∆Max could be relaxed if the flight is delayed and the
boarding time is postponed. Note that this update can be triggered multiple
times during a session. We formalize the session-based TIKRQ problem as
follows.

Problem 2 (Session-based TIKRQ). Let a session s = (q,TopKRoutes),
where q is a TIKRQ and TopKRoutes is the set of result routes. Let Θc specify
the parameters changed in q (i.e., ps, pt, QW , ∆Max or k) and the correspond-
ing new values. Given s and Θc, the session-based TIKRQ problem is to find
the result routes satisfying Θc and update them to TopKRoutes.

While the same query q and the corresponding results TopKRoutes are
alive during a session, for ease of illustration, we refer the updated query and
results as q′ and TopKRoutes ′, respectively, where q′ is identical to q except
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for the changed parameter values in Θc. A naive way to answer q′ is to issue
a new TIKRQ and compute the result routes from scratch. However, in some
cases, we can handle the changes efficiently by utilizing the TopKRoutes and
the intermediate results (e.g., CKP) computed when processing the original
query. We focus on updating one parameter each time, but the techniques can
be easily extended to handle the case that multiple parameters are amended
in one update.

In the following, we present an algorithm ResultUpdate to answer the
session-based TIKRQ, which involves two phases, namely a reusing phase and
a searching phase. The reusing phase checks each route R ∈ TopKRoutes in
the results of q, and decides whether or not it is still feasible for the new query
q′. If so, R is included in the initial results of TopKRoutes ′. The searching
phase searches for the new routes that are possibly in the top-k results of q′.

The implementations of the two phases depend on the type of parameter
changes. Given a session s = (q,TopKRoutes), we list and analyze all possible
changes in s, as shown in Table 3. Depending on the potential reuse of the
routes in TopKRoutes and the intermediate results, these changes can be cat-
egorized into 4 groups. Group 1 enjoys the highest degree of result reuse while
group 4 is the lowest.

Table 3: Analysis on Parameter Changes

Group Case Θc Analysis on Potential Reuse of R ∈ TopKRoutes

1

a ∆Max ← ∆′
Max

where ∆′
Max > ∆Max

Direct Reuse: It is easy to see that R is still
feasible. We can simply initialize TopKRoutes′ by
TopKRoutes.b k ← k′

where k′ > k

2 c ∆Max ← ∆′
Max

where ∆′
Max < ∆Max

Check and Reuse: If R is still feasible, it can be
proven that R is one of the top-k minimum cost
routes for q′, and thus can be put in TopKRoutes′.
Otherwise, we can reuse the intermediate result
to find a feasible route for KPS(R).

3
d ps ← p′s Amend, Check and Reuse: We amend R

according to Θc. If it is feasible, we include it in
the initial TopKRoutes′. Otherwise, we can reuse
the intermediate result to find a feasible route for
KPS(R).

e pt ← p′t

f QW ′ ← QW \ {w}

4 g QW ′ ← QW ∪ {w} Limited Reuse: It is likely that R is not in the
top-k minimum cost routes for q′, since there are
additional key partitions that contribute to w. We
can reuse the CKP for QW to construct CKP ′

(for QW ′), and find the new routes.

As the handling of cases in groups 1 and 4 are trivial, we discuss the details
on groups 2 and 3. In the following, we present how to handle the cases in
groups 2 and 3 in Section 6.1 and 6.2, respectively.
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6.1 ResultUpdate in Group 2

Algorithm 3 ResultUpdateCaseC (q, TopKRoutes, ∆′
Max )

1: TopKRoutes ′ ← ∅
2: for each R ∈ TopKRoutes do ▷ Reusing Phase
3: if δ(R) < ∆′

Max then
4: add R to TopKRoutes ′

5: else
6: R′ ← findFeasibleRoute(KPS (R), ps, pt,∆

′
Max )

7: if R′ ̸= ∅ then
8: add R to TopKRoutes ′

9: end if
10: end if
11: end for
12: if |TopKRoutes ′| == k then return TopKRoutes ′

13: waitTime ′max ← ∆′
Max −

δ(ps,pt)
swalk

14: curKCost ← 0
15: search(q,CKP ,waitTime ′max , curKCost ,TopKRoutes ′) ▷ Searching Phase
16: return TopKRoutes ′

Algorithm 4 search(q, CKP , waitTime ′max , curKCost , TopKRoutes ′)

1: for each remaining subset S of CKP do
2: if costLB(S) > curKCost then continue
3: if

∑
v∈S v.waitTime > waitTimemax then continue

4: R← findFeasibleRoute(S, ps, pt,∆Max )
5: if R ̸= ∅ then
6: update TopKRoutes ′ with R
7: curKCost ← cost of the k-th route in TopKRoutes ′

8: end if
9: end for

Reusing Phase. Consider a route R ∈ TopKRoutes. We prove that R is one
of the top-k minimum cost routes if it is still feasible under the new time
budget ∆′

Max < ∆Max by the following lemma.

Lemma 4. Let TopKRoutes ′ be the results of q′. If δ(R) < ∆′
Max for a route

R ∈ TopKRoutes, where ∆′
Max < ∆Max , we have R ∈ TopKRoutes ′.

Proof We prove this by contradiction. Suppose R ̸∈ TopKRoutes ′, then there must
exist at least k routes that have a smaller cost than R for q′. Since ∆′

Max < ∆Max ,
these k routes must also be feasible and have a smaller cost than R for q, which
contradicts the fact that R is in TopKRoutes. □

Based on this lemma, we can keep the routes in TopKRoutes if they are
feasible. If all routes are feasible, we do not need to search for any new routes.
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Searching Phase. In this phase, we first calculate the updated waitTimemax

based on the new ∆′
Max . Subsequently, We search for the feasible routes from

the remaining subset S of CKP until the top-k routes are found.
The ResultUpdate algorithm for group 2 is shown in Algorithm 3. Specifi-

cally, it checks, for each route R ∈ TopKRoutes in the current result, whether
R is still feasible (i.e., δ(R) < ∆′

Max ). If so, it updates TopKRoutes ′ by R (lines
2–3). Otherwise, it searches for the feasible route R′ with the same key parti-
tion set as R. If such a route R′ exists, it updates TopKRoutes ′ by R′. (lines
6–8). If the TopKRoutes ′ is of size k, TopKRoutes ′ is deemed to be optimal,
and thus is returned as the result. (line 12). Otherwise, the algorithm updates
waitTime ′max , and invokes the search() method as the searching phase.

The search method is shown in Algorithm 4. It iterates the remaining key
partition set S of CKP that has not yet been processed by SSA when answer-
ing q, which can be known by recording the position of the corresponding
pointers when processing q. The iteration is similar to the way that SSA finds
the result routes. The algorithm terminates when all sets have been processed.
Finally, TopKRoutes ′ is returned as the result.

6.2 ResultUpdate in Group 3

In the following, we discuss the details of cases (d), (e) and (f).

6.2.1 Case (d)

Reusing Phase. For each route R ∈ TopKRoutes, we can reuse its KPS (R) to
find a feasible routeR′. After each route is processed, we initialize TopKRoutes ′

by all these feasible routes.

Searching Phase. In fact, the searching phase is identical to that in case
(c) except that we do not need to update waitTimemax . Thus, the search()
method can also be used for case (d).

Algorithm 5 shows the algorithm for result updating for case (d). Specifi-
cally, it maintains a list TopKRoutes ′ storing the k best-known routes found so
far. Then, the reusing phase is carried out as follows. It iterates through each
route R ∈ TopKRoutes, and find if a feasible route with the same key parti-
tion set KPS (R) exists under the new source point p′s. If so, it then updates
TopKRoutes ′ by R′. After all routes in TopKRoutes have been processed, it
proceeds to the searching phase by invoking search() method with the new
source point p′s. Finally, the TopKRoutes ′ is returned as the result.

6.2.2 Case (e)

The method of handling case (e) is exactly the same as case (d) by replacing
the new source point p′s to a new target point p′t. Thus, we can simply reuse
Algorithm 5 by modifying line 3 to findFeasibleRoute(KPS (R), ps, p

′
t,∆Max )

and line 9 to q.pt ← p′t.
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Algorithm 5 ResultUpdateCaseD (q, CKP , TopKRoutes, p′s)

1: TopKRoutes ′ ← ∅
2: for each R ∈ TopKRoutes do ▷ Reusing Phase
3: R′ ← findFeasibleRoute(KPS (R), p′s, pt,∆Max )
4: if R′ ̸= ∅ then
5: add R′ to TopKRoutes ′

6: end if
7: end for
8: curKCost ← cost of the k-th route in TopKRoutes ′

9: q.ps ← p′s
10: search(q,CKP , curKCost ,TopKRoutes ′) ▷ Searching Phase
11: return TopKRoutes ′

6.2.3 Case (f)

Reusing Phase. For each route R ∈ TopKRoutes, we remove the key par-
titions that are only relevant to w from R, denoted by R′. It is easy to see
that R′ is feasible. After each route is processed, we initialize TopKRoutes ′ by
using all these amended routes.

Searching Phase. In fact, the searching phase is identical to that in case
(c) except that we do not need to update waitTimemax . Thus, the search()
method can also be used for case (f).

Algorithm 6 shows the algorithm for result updating. Specifically, it main-
tains a list TopKRoutes ′ storing the k best-known routes found so far. Then,
it refines the set of candidate key partition by removing the keyword w (lines
1–2). Next, it performs the reusing phase as follows. It iterates through each

route R ∈ TopKRoutes, and removes the key partitions that are in C̃P(w)
from R. It then updates TopKRoutes ′ by R. After all routes in TopKRoutes
have been processed, it proceeds to the searching phase by invoking search()
method. Finally, the TopKRoutes ′ is returned as the result.

Algorithm 6 ResultUpdateCaseF (q, CKP , TopKRoutes, w)

1: TopKRoutes ′ ← ∅
2: C̃P(w)← CP(w) \ ∪w′∈QW ′CP(w′)
3: for each R ∈ TopKRoutes do ▷ Reusing Phase
4: KPS (R)← KPS (R) \ ∪

vi∈C̃P(w)
vi

5: add R to TopKRoutes ′

6: end for
7: curKCost ← cost of the k-th route in TopKRoutes ′

8: q.QW ← q.QW \ {w}
9: search(q,CKP , curKCost ,TopKRoutes ′) ▷ Searching Phase

10: return TopKRoutes ′
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6.3 Time Complexity

Let dmax be the maximum number of doors of a partition, m be the cost for
computing the fastest route from a door to another, and β be the time com-
plexity of Algorithm 4. The time complexity of Algorithm 3 and Algorithm 5
are O(k · |S|! · |S| ·d2max ·m+β), which is because in the worse case they checks,
for each route in TopKRoutes, whether a feasible route exists. This checking
costs O(|S|! · |S| · d2max ·m+ β), as analyzed in Section 4.3.

The time complexity of Algorithm 6 is O(k · |QW | · |C̃P(w)|+ β), since it

updates each route R in TopKRoutes by removing the partitions in C̃P(w).
Next we analyze β, it is easy to see that the time complexity of the Algo-

rithm 4 is same as that of SSA, which is O(|KPS | · |S|! · |S| · d2max ·m). Thus,
combining the above, the time complexities of Algorithm 3, Algorithm 5 and
Algorithm 6 are dominated by Algorithm 4.

7 Empirical Studies

In this section, we evaluate our proposed algorithms. The experiments on syn-
thetic and real dataset are presented in Sections 7.1 and 7.2, respectively. For
easy reference, we use Table 4 to show the roadmap of this section.

Table 4: Organization of Experiment Results

Synthetic Dataset Real Dataset

Set-up Section 7.1.1 Section 7.2.1

TIKRQ
Section 7.1.2

Section 7.2.2
Section 7.1.3

Variants
1. Preferred Visiting Order Section 7.1.4 Section 7.2.3
2. Absence of Target Point Section 7.1.5 Section 7.2.4

Session-based
TIKRQ

Case (c): Reduced Time Budget Section 7.1.6 Section 7.2.5
Case (d): Changed source point Section 7.1.7 Section 7.2.6
Case (e): Changed target point Section 7.1.8 Section 7.2.7
Case (f): Keyword Removal Section 7.1.9 Section 7.2.8

7.1 Experiment on Synthetic Dataset

7.1.1 Set-up

Indoor Space. Following [12], we generate a n-floor building based on a real
world floor plan5, where n = {3, 5, 7, 9}. Each floor is 1368m × 1368m, consists
of 96 rooms, 4 hallways, and 4 staircases. We obtain 141 partitions and 200
doors on each floor by decomposing those irregular hallways into smaller and
regular partitions. To model the elevators in an indoor space, we convert two
staircases to elevators that connect to all floors, rather than the adjacent floors
only. Each elevator has a waiting time of 30 seconds and takes 10 seconds to

5https://longaspire.github.io/s/fp.html

https://longaspire.github.io/s/fp.html
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traverse from one floor to another. The remaining two staircases connect two
adjacent floors, each being 20m long. By default, we set n = 5 and the indoor
space contains 705 partitions and 1100 doors.

Partition Keywords. We assign keywords to each room as follows. First, we
crawl the shop information of five shopping malls in Hong Kong6 online using
Scrapy. We obtain 2074 documents for 1225 shop brands. All the 1225 brand
names are used as i-words. Second, we manually categorize these brand names
into 11 categories, following the categorization used in the shopping malls (e.g.,
clothing, cosmetics and restaurant). These categories are used as the c-words.
Each category contains 111 i-words on average. Third, we feed these i-words
into the RAKE algorithm [32] to extract keywords from the corresponding
documents. Only 1120 i-words yield extracted keywords. For each such i-word,
we use up to 60 extracted keywords with the highest TF-IDF values. In total,
we have 9195 extracted keywords and each i-word corresponds to an average of
16.6 extracted keywords. For the partitions, their static cost and waiting time
are picked uniformly at random, in the range [1, 10] and [0, 100], respectively.

Queries. We generate the query keywords as follows. The number of query
keywords |QW | is in the range [1, 5], as over 95% of web search queries have at
most 5 keywords7. We vary the fractions of c-words/i-words/t-words in QW ,
as the parameter c/i/t. The procedure is to vary the fraction of one type with
the other two types being changed accordingly. Take the c-word as an example,
we vary its fraction from p = [0.1, 0.9], and the fractions of i-words and t-
words are both set to be (1 − p)/2. In addition, we vary the parameters α in
Equation 1. Table 5 summaries the parameters setting with default values in
bold.

Table 5: Parameter Settings

Parameters Settings

k 1, 3, 5, 7, 9, 11
|QW | 1, 2, 3, 4, 5
∆Max 3000, 3500, 4000, 4500, 5000 (seconds)
c/i/t 0.1/0.45/0.45, 0.2/0.4/0.4, . . ., 0.05/0.05/0.9
n 3, 5, 7, 9
α 0.1, 0.3, 0.5, 0.7, 0.9

Algorithms. We compare our SSA algorithm with a baseline algorithm
SSA\P . SSA\P follows the workflow of SSA, but the proposed pruning fea-
tures and computation strategy in SSA are removed. Also, we adapt the
algorithm KoE [12], which is originally designed for IKRQ. The adaption is
as follows. It expands the partial routes from ps to search one of the key
partitions that can cover some of those uncovered query keywords, until all
keywords are covered, and finally connects to pt. For each complete route, it
calculates the cost of the routes and maintains the top-k feasible routes. The

6https://longaspire.github.io/s/hkdata.html
7http://www.keyworddiscovery.com/keyword-stats.html

https://longaspire.github.io/s/hkdata.html
http://www.keyworddiscovery.com/keyword-stats.html
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route-based speed-up techniques (i.e., Pruning 3 and Lemma 3) and cross-
iteration computation strategy are also employed in the adaption to allow a
fair comparison.

For the Session-based TIKRQ proposed in Section 6, we compare the per-
formance of the four ResultUpdate (RU) algorithms and SSA, where SSA
finds the result routes without using the results of the previous computations.

All algorithms are implemented in Java and run on a Mac with a 2GHz
Quad-Core Intel i5 CPU and 16GB memory. The code and data are available
in GitHub repository8.

Performance Metrics. We measure the running time and the memory con-
sumption. For each experimental setting, we generate 10 queries and report
the average results. Note that the results are based on the queries with
routes returned only. In case of no route is returned as the result, we simply
re-generate a new query.

7.1.2 Efficiency Studies

Effect of k. Figure 4 shows the results of varying k. According to Figure 4(a),
the running times of SSA and SSA\P increase slightly when k increases. This
is because a larger k incurs more routes to be explored. KoE is insensitive
to k while it always requires significantly long time to terminate. In general,
our SSA runs faster than SSA\P and KoE by an order of magnitude, as
contributed by the pruning techniques and computation strategy employed.
According to Figure 4(b), the memory usages of all algorithms fluctuate with a
varying k. SSA still consumes less than 10MB of memory in different k values,
much less than its competitors.
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Fig. 4: Effect of k

Effect of Query Size |QW |. Figure 5 shows the results of varying the number
of query keywords from 1 to 5. According to Figure 5(a), the running times of
all algorithms increase with an increasing |QW |. A larger |QW | leads to more
relevant partitions and thus more key partition sets need to be formed and
considered. Moreover, each key partition set would be larger and therefore it
takes more time to find the complete route for the set in each iteration. Our
SSA runs consistently faster than SSA\P and KoE, and the gap enlarges

8https://github.com/harryckh/TIKRQ

https://github.com/harryckh/TIKRQ
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when |QW | increases. This is because our pruning strategies are more effective
when |QW | is larger. According to Figure 5(b), the memory usages of all
algorithms are similar and increase steadily with |QW |. However, SSA and
SSA\P grow slower than KoE. Even with more pruning strategies employed,
SSA consumes fewer memories than SSA\P and KoE for |QW |. This is due
to the use of the cross-iteration computation strategy.
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Fig. 5: Effect of |QW |

Effect of Time Constraint ∆Max . Figure 6 reports the results of varying
∆Max . According to Figure 6(a), the running times of both SSA and SSA\P
decreases when ∆Max increases and our SSA always outperforms SSA\P and
KoE. Note that a looser ∆Max reduces the difficulty of finding the feasible
routes and results in fewer key partition sets to explore. In this sense, the
effectiveness of Pruning Rules 2 and 3 is amplified in a setting of a larger
∆Max . Referring to Figure 6(b), the memory usage of SSA decreases when
∆Max increases, since fewer paths and infeasible sets need to be stored when a
larger ∆Max is set. On the other hand, both SSA\P and KoE are insensitive
to ∆Max , and incur higher memory usages than SSA.
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Fig. 6: Effect of ∆Max

Effect of Number of Floors n. To evaluate the scalability of our algo-
rithm, we vary n in {3, 5, 7, 9} and report the result in Figure 7. According
to Figure 7(a), the running times of all algorithms increase with n increases.
A higher n means a larger number of partitions and thus more relevant par-
titions need to be checked. Particularly, the elevators in our setting allow the
route to pass different floors easily. Thus, the time constraint can barely help
reducing the search space. Nevertheless, SSA runs consistently faster than its
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competitors and it can finish within 3 seconds when n grows up to 9, showing
its scalability.
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Fig. 7: Effect of n

Effect of α. Figure 8 reports the running time of the algorithms when varying
α. Our SSA runs faster than SSA\P and KoE by orders of magnitude. Also,
the running time of KoE decreases when α increases. For the route cost given
in Definition 1, having a larger α puts less weight on routes’ textual relevance,
which is easier for a graph-based algorithm likeKoE to find routes with smaller
cost. The memory usages of all algorithms are insensitive to α, and SSA uses
the least memory among all three.
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Effect of Fraction of c/i/t-words. We vary the parameter p of each type of
word (cf. Section 7.1.1) and report the result for SSA in Figure 9. In general,
there is not much difference in the running time of different combinations of
keywords.

7.1.3 Effectiveness Studies

Case Study. To show that TIKRQ is able to return desirable routes in prac-
tice, we perform a case study by comparing the TIKRQ result with that of
minimizing the route’s time cost. The query keywords are apple (an i-word)
and coffee (a t-word), ∆Max = 3600 seconds (one hour), k = 3. We use α = 0.8
to reflect and suit the needs of keyword-awareness in shopping. The routes
returned by TIKRQ are listed in Table 6. The top-1 route (say R) has a total
route cost Cost(R) = 0.125 and time cost γ(R) = 2474.545 (≈ 41 minutes).
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In particular, R has a textual relevance of 1, as it passes the partitions apple
and coffee day (which sells coffee). In contrast, the route R′ with the mini-
mum time cost (i.e., γ(R′) = 1596.807 ≈ 27 minutes) incurs an overall route
cost of 0.450. R′ only has a textual relevance of 0.55, as it does not pass apple
but another partition with category electronics. Although R has a longer time
needed, its textual relevance and route cost meet the practical user needs. This
demonstrates that our returned paths can better serve the users in the context
of keyword awareness.

Table 6: Case Study

k
Textual

Relevance
Route Cost Time Cost

TIKRQ returned path
1 1 0.05 2474.545
2 1 0.08 1891.023
3 1 0.13 2540.905

minimum time
cost path

R′ 0.55 0.45 1596.807

Effect of Unique Partition Set. To compare the results with and without
adopting the concept unique partition set, we run SSA\UPS which removed
the requirement of unique partition set. In other words, it allows different
routes in the k resulting routes to have an identical key partition set.

We measure the identical rate as the fraction of routes with the identical
key partition set with others. We ran 10 queries for each k and Figure 10
reports the average rate. It shows that the identical rate of SSA\UPS increases
rapidly when k increases. More than 60% of the returned routes have identical
key partition sets when k ≥ 5. Such routes are not interesting to users and
hinder the diversity of the results. This verifies that the unique partition set
offers users more diversified combinations of partitions in the result.
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7.1.4 Variant 1: Preferred Visiting Order

We randomly generate a visiting order for the query keywords.

Effect of k. Figure 11 shows the results of varying k. According to
Figure 11(a), the running times of both SSA and SSA\P increase when k
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increases. While KoE is insensitive to k, it runs much slower than SSA. Sim-
ilar to the case without a visiting order (Figure 4), our SSA runs faster than
SSA\P and KoE by an order of magnitude. Moreover, all algorithms are
faster than the counterparts without a visiting order. This is because ordering
keywords reduces the search space for finding the feasible routes. According
to Figure 4(b), the varied value of k does not cause big changes of the mem-
ory usages of the algorithms, and SSA always consumes less than 10MB of
memory, clearly better than its competitors.
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Fig. 11: Effect of k (Variant 1: Preferred Visiting Order)

Effect of Query Size |QW |. Figure 12 shows the results of varying |QW |.
According to Figure 12(a), SSA runs consistently faster than SSA\P and
KoE, as the set-based search strategy and the pruning techniques in SSA
prune the unqualified key partition sets and infeasible routes effectively.
According to Figure 12(b), the memory usages of SSA\P and KoE increase
steadily with |QW |. SSA always outperforms its competitors, using less than
10MB of memory. This is due to the reduced search space in SSA.
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Fig. 12: Effect of |QW | (Variant 1: Preferred Visiting Order)

Effect of ∆Max . Figure 13 shows the results of varying ∆Max . According to
Figure 13(a), the running times of SSA and SSA\P decrease when ∆Max

increases, and SSA always outperforms the competitors, similar to what are
seen in Figure 6. This is because a larger ∆Max reduces the difficulty of finding
the feasible routes, and thus the number of key partition sets need to be
explored is decreased. According to Figure 13(b), the memory usage of SSA
is always the least, using less than 10MB of memory, since it has the smallest
search space and thus fewer paths and infeasible sets need to be stored.
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Fig. 13: Effect of ∆Max (Variant 1: Preferred Visiting Order)

7.1.5 Variant 2: Absence of Target Point

Effect of k. Figure 14 shows the results of varying k. According to
Figure 14(a), the running times of SSA and SSA\P increase with an increas-
ing k. The running time of KoE is insensitive to k, but is always larger than
10 seconds. Our SSA runs faster than SSA\P and KoE by at least an order
of magnitude, as the effectiveness of the pruning techniques and computa-
tion strategies are not affected by the absence of a target point. According to
Figure 14(b), the memory usages of all algorithms are insensitive to the value
of k, and SSA always consumes the least memory.
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Fig. 14: Effect of k (Variant 2: Absence of Target Point)

Effect of Query Size |QW |. Figure 15 shows the results of varying |QW |.
According to Figure 15(a), the running times of all algorithms increase with
query size, while that of KoE increases more rapidly. SSA runs faster than
KoE when |QW | is large (e.g., |QW | ≥ 3). When |QW | = 5, KoE takes more
than 100 seconds to run, while our SSA is more scalable to |QW | and can
finish within 1 second. It is because our set-based search strategy in SSA is
more robust to the large query size, while pruning rules in KoE rely the target
point heavily to reduce the search space. On the other hand, in the case that
query size is small, the solution is usually trivial and easy to find, especially
when the routes do not need to reach the target point. In this case, the time
overhead of the prunings in SSA outweighs the performance gain, and thus
SSA is slower than KoE. Still, SSA can terminate in real time, e.g., within
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0.2 seconds. According to Figure 15(b), the memory usage of SSA is always
less than 10MB, the least among all algorithms.
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Fig. 15: Effect of |QW | (Variant 2: Absence of Target Point)

Effect of ∆Max . Figure 16 shows the results of varying ∆Max . According to
Figure 16(a), the running times of all algorithms are insensitive to ∆Max . This
is because the result routes do not need to reach the target points, and thus
it is easier to find the feasible routes. Moreover, SSA always performs the
best, as contributed by the set-based search strategy and pruning techniques
employed. According to Figure 16(b), the memory usages of the algorithms
are insensitive to ∆Max , and SSA is the least among the competitors, since it
has a small search space to explore.
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Fig. 16: Effect of ∆Max (Variant 2: Absence of Target Point)

7.1.6 Session-based TIKRQ: Reduced Time Budget (Case (c))

We set ∆′
Max = ∆Max − 500 seconds. Thus ∆′

Max = 3000 seconds is used as
the default value.

Effect of ∆′
Max . Figure 17 shows the results of varying ∆′

Max , while keeping
∆Max = 3500. According to Figure 17(a), the running times of both RU and
SSA decrease when ∆′

Max increases. Moreover, RU runs much faster than
SSA, which shows the advantage of reusing the results. In particular, the
running times of RU are close to 0 when ∆Max ≥ 3300. When the time budget
change is small, more result routes can be reused, and thus lowering the total
computation time. Besides, RU runs slower when ∆′

Max = 3200 than ∆′
Max =

3100. It is probably because when ∆′
Max = 3200, it takes a longer time to find
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the feasible route of KPS (R) for each route R in TopKRoutes. When ∆′
Max =

3100, it is easier to verify the infeasibilities of the routes in TopKRoutes (as
the time budget is smaller), and thus it proceeds to find routes from other key
partition sets quickly. According to Figure 17(b), both algorithms consume
less than 10MB memory, and RU uses less memory than SSA.
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Fig. 17: Effect of ∆′
Max (Case (c))

Effect of k. Figure 18 shows the results of varying k. According to
Figure 18(a), the running times of both algorithms increase when k increases.
RU runs faster than SSA, and the difference become larger when k enlarges.
It is because when k increases, the number of original results also increases,
which helps to reduce the search space in RU . According to Figure 18(b), the
memory usage of RU is much smaller than that of SSA, since the search space
is smaller in RU .
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Fig. 18: Effect of k (Case (c))

Effect of Query Size |QW |. Figure 19 shows the results of varying |QW |.
According to Figure 19(a), the running times of both algorithms increase with
query size, since more key partitions need to be considered and thus longer
routes are formed. Moreover, RU runs consistently faster than SSA. It is
because the result reuse phase saved the expensive computation in the search
phase. According to Figure 19(b), the memory usage of RU increases with the
query size, since more key partitions and longer routes need to be stored. Still,
RU consumes less memory than SSA.

Effect of ∆Max . Figure 20 shows the results of varying ∆Max . According
to Figure 20(a), the running times of both algorithms decrease when ∆Max

increases, as the difficulty of finding the feasible routes decreases. When ∆Max
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Fig. 19: Effect of |QW | (Case (c))

is large (e.g., ∆Max ≥ 4000), RU can terminate very quickly (e.g., within
0.01s), since most of the results can be reused as the time budget is loose.
According to Figure 20(b), the memory usages of both algorithms are small
(less than 10MB), and RU has a lower memory consumption than SSA.
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Fig. 20: Effect of ∆Max (Case (c))

7.1.7 Session-based TIKRQ: Changed source point (Case (d))

Effect of k. Figure 21 shows the results of varying k. According to
Figure 21(a), the running times of both algorithms increase with k, and RU
runs slightly faster than SSA, which shows that our result reusing strategy
can reduce the search space. According to Figure 21(b), the memory usages
of both RU and SSA fluctuate with a varying k, but both algorithms always
use less than 10MB of memory.

Effect of Query Size |QW |. Figure 22 shows the results of varying |QW |.
According to Figure 22(a), the running times of both RU and SSA increase
with |QW |, while RU runs consistently faster than SSA since the RU reuses
some feasible routes. According to Figure 22(b), the memory usage of both
algorithms are similar, and are less than 10MB.

Effect of ∆Max . Figure 23 shows the results of varying ∆Max . According
to Figure 23(a), the running times of both algorithms decrease when ∆Max

increases, which is because the larger ∆Max makes the algorithms easier to
find feasible routes. Moreover, RU always runs faster than SSA. This again
shows the computation time is reduced by the result reuse strategy. According
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Fig. 21: Effect of k (Case (d))
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Fig. 22: Effect of |QW | (Case (d))

to Figure 23(b), the memory usage of RU and SSA are similar, and both
algorithms consume less than 10MB of memory in different ∆Max values.
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Fig. 23: Effect of ∆Max (Case (d))

7.1.8 Session-based TIKRQ: Changed target point (Case (e))

Effect of k. Figure 24 shows the results of varying k. According to
Figure 24(a), the running time of SSA increases with k, while that of RU
remains almost the same, and RU runs consistently faster than SSA. This
shows the advantage of our result reuse strategy employed in RU . Comparing
with Figure 21(a), we find that the running time of RU in case (d) is larger.
The reason is that the algorithm finds feasible route starting from ps, and
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thus changing the source point leads to a smaller chance of information reuse,
which thus incurs a higher running time. According to Figure 24(b), the mem-
ory usages of both algorithms fluctuate with a varying k, but are always less
than 10MB of memory. RU consumes fewer memory than SSA, since RU has
a smaller search space.
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Fig. 24: Effect of k (Case (e))

Effect of Query Size |QW |. Figure 25 shows the results of varying |QW |.
According to Figure 25(a), the running times of both RU and SSA increase
when |QW | increases, while RU runs faster than SSA, since the result reuse
phase can identify some feasible routes quickly. According to Figure 25(b), RU
uses fewer memory than SSA, while both algorithms use smaller than 10MB
in different query sizes. The increase in running time and memory usage of RU
when |QW | = 5 is probably because the large number of keywords increased
the difficulty to find feasible routes in the result reusing phase. Thus, more
computation is needed to find new feasible routes in the searching phase.
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Fig. 25: Effect of |QW | (Case (e))

Effect of ∆Max . Figure 26 shows the results of varying ∆Max . According
to Figure 26(a), the running times of both algorithms decrease when ∆Max

increases, and RU always runs faster than SSA. This again shows the compu-
tation time is reduced by the result reuse strategy. According to Figure 26(b),
the memory usage of RU is smaller than that of SSA, and both algorithms
consume less than 10MB of memory in different ∆Max values.
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Fig. 26: Effect of ∆Max (Case (f))

7.1.9 Session-based TIKRQ: Keyword Removal (Case (f))

Given QW , we randomly remove a keyword in QW to obtain QW ′.

Effect of k. Figure 27 shows the results of varying k. According to
Figure 27(a), the running times of both algorithms increase with k, and RU
runs consistently faster than SSA, since the result reuse strategy can greatly
reduce the search space. According to Figure 27(b), the memory usages of
both algorithms fluctuate with a varying k, but are always less than 10MB
of memory. RU consumes fewer memory than SSA, since RU has a smaller
search space.
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Fig. 27: Effect of k (Case (f))

Effect of Query Size |QW |. Figure 28 shows the results of varying |QW |. The
results of |QW | = 1 is not shown because |QW ′| = 0 after the keyword removal.
According to Figure 28(a), RU runs faster than SSA since the result reuse
phase can identify some feasible routes quickly. According to Figure 28(b), the
memory usage of RU is much smaller than SSA, because of the smaller search
space in RU .

Effect of ∆Max . Figure 29 shows the results of varying ∆Max . According to
Figure 29(a), the running times of both algorithms are insensitive to ∆Max ,
and RU always runs faster than SSA. This again shows the computation time
is reduced by the result reuse strategy. According to Figure 29(b), the memory
usage of RU is smaller than that of SSA, and both algorithms consume less
than 10MB of memory in different ∆Max values.
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Fig. 28: Effect of |QW | (Case (f))
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Fig. 29: Effect of ∆Max (Case (f))

7.2 Experiment on Real Dataset

7.2.1 Set-up

Following [12], we conduct our experiment on real dataset of a shopping mall
in Hangzhou, China. The building has 7 floors each approximately of 108m ×
80m, and contains 10 staircases each being 20m long. It contains 639 stores,
those of the same category are usually located on the same floor. The keywords
of the stores are extracted from the mall’s website. In total, we obtain 5036
t-words and 533 i-words. We categorize them into the 11 categories as in the
synthetic dataset. Also, we use the same parameter settings as in Table 5.

7.2.2 Results on TIKRQ

Effect of k. Figure 30 shows the results of varying k. According to
Figure 30(a), the running times of both SSA and SSA\P increase slowly when
k increases. This could be explained by the fact that the mall usually has shops
of the same category (and thus having similar keywords) in the same floor.
Thus, only small extra computation is needed to explore more results (i.e., a
larger k). Besides, our SSA runs faster than its competitors by approximately
two orders of magnitude, since our pruning techniques reduced the search
space effectively. According to Figure 30(b), SSA consumes less than 10MB of
memory in different values of k, similar to SSA\P and much less than KoE.
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Fig. 30: Effect of k

Effect of Query Size |QW |. Figure 31 shows the results of varying |QW |.
According to Figure 31(a), the running times of all algorithms increase when
query size increases, because larger key partition sets need to be formed. Our
SSA consistently runs faster than SSA\P and KoE, and the gap enlarges
when the query size increases, as contributed by the pruning techniques
employed in SSA. In particular, when |QW | = 5, SSA takes less than 2
seconds to terminate, while KoE takes more than an hour (3600 seconds).
According to Figure 31(b), the memory usage of SSA is usually smaller than
the competitors, and is less than 10MB in different values of |QW |.
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Fig. 31: Effect of |QW |

Effect of ∆Max . Figure 32 shows the results of varying ∆Max . According
to Figure 32(a), SSA runs faster than SSA\P and KoE by approximately
two orders of magnitude. This is because our set-based search strategy and
pruning techniques can find the result feasible routes quickly. According to
Figure 32(b), the memory usages of SSA and SSA\P are similar, and both
are smaller than that of KoE.

7.2.3 Variant 1: Preferred Visiting Order

Effect of k. Figure 33 shows the results of varying k. According to
Figure 33(a), the running times of the algorithms increase when k increases,
and SSA runs faster than both KoE and SSA\P . This is because our pruning
techniques and computation strategy are still effective when there is a visiting
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Fig. 32: Effect of ∆Max

order requirement. According to Figure 33(b), the memory usages of SSA and
KoE are similar, and both algorithms consume less memory than SSA\P .

Comparing Figure 30(a) and Figure 33(a), we observe performance
improvements on all three algorithms when visiting order is imposed. This
is because the visiting order requirement helps to reduce the search space.
Interestingly, we also observe that the improvement of KoE is much larger
than that of SSA (and SSA\P ), which is likely because of the shops’ location
distribution in the dataset.

Specifically, the real dataset is a shopping mall, where the shops in the
same category (and having similar i-words and t-words) are usually located
closely, e.g., in a cluster on the same floor. Thus, when we do not have visiting
order requirement, KoE has a huge search space and is slow, because it needs
to iterate a lot of candidate routes that are feasible in order to find the best k
routes (i.e., with the k smallest route costs).

When the visiting order is imposed, the search space in KoE is shrinked
much more (compared to SSA), since there is only one possible visiting order of
keywords for the routes. The improvement in SSA is less significant, since the
original search space in SSA is much smaller, as contributed by our set-based
search strategy and pruning techniques.

It is noteworthy that this significant improvement in KoE are not observed
in the synthetic data (e.g., Figure 27(a) and Figure 11(a)), because the syn-
thetic dataset does not exhibit such spatial proximity of the shops in the same
category.
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Fig. 33: Effect of k (Variant 1: Preferred Visiting Order)
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Effect of Query Size |QW |. Figure 34 shows the results of varying |QW |.
According to Figure 34(a), the running times of all algorithms increase when
the query size increases, and SSA always outperforms its competitors. This
is because our pruning strategies are effective. In particular, KoE needs more
than 100s to terminate when |QW | = 5, which shows that KoE is not scalable
to query sizes. According to Figure 34(b), the memory usages of all algorithms
are similar, and SSA is able to keep a low memory consumption in all cases.
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Fig. 34: Effect of |QW | (Variant 1: Preferred Visiting Order)

Effect of ∆Max . Figure 35 shows the results of varying ∆Max . According to
Figure 35(a), the running times of all algorithms are not affected by ∆Max ,
which is probably because the layout of the mall allows shops to be easily
accessed, and thus reducing the difficulty of finding the feasible route. More-
over, our SSA outperforms its competitors. According to Figure 35(b), the
memory usages of all algorithms are similar, and SSA is always among the
best due to its small search space.
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Fig. 35: Effect of ∆Max (Variant 1: Preferred Visiting Order)

7.2.4 Variant 2: Absence of Target Point

Effect of k. Figure 36 shows the results of varying k. According to
Figure 36(a), the running times of all algorithms increase slightly when k
increases. Our SSA runs faster than both SSA\P and KoE. This is because
our pruning strategies are effective even in the case of without the target point.
According to Figure 36(b), the memory usages of the algorithms are similar,
and SSA usually consumes the least memory.
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Fig. 36: Effect of k (Variant 2: Absence of Target Point)

Effect of Query Size |QW |. Figure 37 shows the results of varying |QW |.
According to Figure 37(a), the running times of all algorithms increase with
query size, and SSA is more scalable to the query size. This is because our
set-based search strategy is more robust to increases of query size. Similar to
the case in synthetic dataset (i.e., Figure 15), when query size is small and
target point is absence, the solution is usually trivial and easy to find. The
time overhead of the pruning techniques in SSA outweighs the performance
gain, and thus runs slower than KoE in such case. According to Figure 37(b),
the memory usage of SSA is always the least, consumes less than 10MB of
memory.
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Fig. 37: Effect of |QW | (Variant 2: Absence of Target Point)

Effect of ∆Max . Figure 38 shows the results of varying ∆Max . According to
Figure 38(a), the running time of SSA is faster than SSA\P and KoE by
approximately two orders of magnitude, since the prunnings reduced the search
space effectively. According to Figure 38(b), the memory usage of SSA is the
least among the competitors.

7.2.5 Session-based TIKRQ: Reduced Time Budget (Case (c))

Effect of k. Figure 39 shows the results of varying k. According to
Figure 39(a), the running time of SSA increases when k increases, while RU
keeps its running time close to 0. This is because RU can reuse most of
the results to avoid the time-consuming feasible route finding. According to
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Fig. 38: Effect of ∆Max (Variant 2: Absence of Target Point)

Figure 39(b), the memory usage of RU is also close to 0, much smaller than
that of SSA.
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Fig. 39: Effect of k (Case (c))

Effect of Query Size |QW |. Figure 40 shows the results of varying |QW |.
According to Figure 40(a), the running time of SSA increases with large query
sizes, and RU terminates in close to 0 second. This is because our result reuse
phase can reduce the number of new key partition sets that need to be explored.
According to Figure 40(b), the memory usage of RU is much less than SSA.
Still, both algorithms consume less than 10MB of memory.
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Fig. 40: Effect of Query Size |QW | (Case (c))

Effect of ∆Max . Figure 41 shows the results of varying ∆Max . According to
Figure 41(a), the running times of both algorithms are insensitive to the value
of ∆Max . RU terminates much faster than SSA, since most of the results can
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be reused. According to Figure 41(b), the memory usages of both algorithms
are small (less than 10MB), and RU always consumes a much smaller amount
of memory.
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Fig. 41: Effect of ∆Max (Case (c))

7.2.6 Session-based TIKRQ: Changed source point (Case (d))

Effect of k. Figure 42 shows the results of varying k. According to
Figure 42(a), the running times of both algorithms increase when k increases,
and RU runs consistently faster than SSA. According to Figure 42(b), the
memory usages of both algorithms fluctuate with k, and both are less than
10MB of memory.
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Fig. 42: Effect of k (Case (d))

Effect of Query Size |QW |. Figure 43 shows the results of varying |QW |.
According to Figure 43(a), RU runs faster than SSA consistently, and the
differences increase with |QW |. This again show the advantage of our result
reuse strategy. According to Figure 43(b), the memory usage of RU and SSA
are similar, and are smaller than 10MB.

Effect of ∆Max . Figure 44 shows the results of varying ∆Max . According to
Figure 44(a), while the running times of both algorithms are insensitive to
∆Max , and RU consistently runs faster than SSA. This again is contributed
by the result reuse phase in RU . According to Figure 44(b), the memory usage
of RU is smaller than SSA, and both are less than 10MB.
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Fig. 43: Effect of |QW | (Case (d))
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Fig. 44: Effect of ∆Max (Case (d))

7.2.7 Session-based TIKRQ: Changed target point (Case (e))

Effect of k. Figure 45 shows the results of varying k. According to
Figure 45(a), the running time of SSA increases with k, and that of RU is
always close to 0, consistently faster than SSA. In particular, RU can ter-
minate within 0.1 seconds, which again is contributed by the result reuse.
According to Figure 45(b), the memory usages of RU is smaller than SSA,
and both algorithms use less than 10MB of memory in different k values.

RU SSA

0

0.4

0.8

1.2

1.6

1 3 5 7 9 11

R
u

n
n

in
g

 t
im

e
 (

s
)

k

0

2

4

6

8

10

1 3 5 7 9 11

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

k

(a) Running time (b) Memory usage

Fig. 45: Effect of k (Case (e))

Effect of Query Size |QW |. Figure 46 shows the results of varying |QW |.
According to Figure 46(a), RU runs consistently faster than SSA. Also, we
observed that running time of RU decreases slightly when |QW | increases. It
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is because when |QW | is large, more routes have been explored during the
original search, and thus more information can be re-used, which lowered the
running time. According to Figure 46(b), the memory usage of RU is smaller
than SSA due to the reduced search space.
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Fig. 46: Effect of |QW | (Case (e))

Effect of ∆Max . Figure 47 shows the results of varying ∆Max . According to
Figure 47(a), while the running times of both algorithms are insensitive to
∆Max , and RU terminates within 0.1 seconds, consistently runs faster than
SSA. This again is contributed by the result reuse phase in RU . According to
Figure 47(b), the memory usage of RU is smaller than SSA, and both are less
than 10MB.
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Fig. 47: Effect of ∆Max (Case (e))

7.2.8 Session-based TIKRQ: Keyword Removal (Case (f))

Effect of k. Figure 48 shows the results of varying k. According to
Figure 48(a), the running times of both algorithms increase when k increases,
and RU runs consistently faster than SSA. In particular, RU can terminate
within 0.1 seconds, which again is contributed by the result reuse. According
to Figure 48(b), the memory usages of both algorithms are not affected by the
value of k, and are less than 10MB of memory.

Effect of Query Size |QW |. Figure 49 shows the results of varying |QW |. The
results of |QW | = 1 is not shown because |QW ′| = 0 after the keyword removal.
According to Figure 49(a), RU runs faster than SSA, as the result reuse phase
found part of the result routes and thus reduced the computation needed to
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Fig. 48: Effect of k (Case (f))

find feasible routes on new key partition sets. According to Figure 49(b), the
memory usage of RU is smaller than SSA due to the reduced search space.
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Fig. 49: Effect of |QW | (Case (f))

Effect of ∆Max . Figure 50 shows the results of varying ∆Max . According
to Figure 50(a), while the running times of both algorithms are not affected
by ∆Max , RU consistently runs faster than SSA by an order of magnitude.
This again is contributed by the result reuse phase in RU . According to
Figure 50(b), the memory usage of RU is smaller than SSA, and both are less
than 10MB.
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8 Related Work

Query Processing in Indoor Space. Efficient indoor query processing has
received significant attention in recent years. Some works [28, 42, 44, 45] stud-
ied the indoor spatial queries such as range queries, kNN queries, and shortest
path queries under various settings. Lu et al. [27] designed an indoor space
model that facilitates indoor shortest path finding. Shao et al. [37, 38] pro-
posed the VIP-Tree and KP-Tree that allows efficient processing of indoor
shortest path queries and spatial keyword queries. However, they did not con-
sider the keyword-aware routing queries, which is the focus of this work. Luo
et al. [29] studied the time-constrained sequence route query in an indoor
space. Their work considers the stay-time and partitions’ category, but not
the objects’ static cost and thus their solution is not applicable to our prob-
lem. Liu et al. [25] studied the indoor temporal-aware shortest path query,
which considers the current time stamp and the opening hours of the doors.
The temporal-aware setting is orthogonal to our problem, and it can be inte-
grated into our problem to model the case that partitions and doors have
different opening hours. Liu et al. [26] proposed two indoor crowd-aware route
planning queries, which find the fastest route and least crowded route. They
developed a time-evolving population estimator to derive room populations
for a future time. Both exact and approximate algorithms were proposed to
answer the two queries. Chan et al. [6] studied the social distance monitoring
query in the indoor space. They proposed a framework for monitoring and pre-
dicting the pairwise distances between users in an online setting. Li et al. [23]
developed an indoor spatial data management system that supports k nearest
neighbor query and shortest path query in an indoor space. Li et al. [24] pro-
posed the indoor reverse k nearest neighbor query. They proposed an indoor
influence computation algorithm, which utilizes the VIP-Tree [38] as the under-
lying index. Sun et al. [40] studied the indoor nearest neighbor search based
on crowdsourced Received Signal Strength Indication (RSSI), which find an
approximate nearest neighbor.

Keyword-aware Routing in Indoor Space. Salgado [34] studied the
keyword-aware skyline route (KSR) search in indoor venues that considers the
number of objects in the routes and the route distances. While KSR assumes
that each partition contains one keyword, our setting allows a partition to have
multiple keywords. Salgado et al. [35] studied the category-aware multi-criteria
indoor route planning queries (CAM queries) that consider the objects’ key-
word and static cost. Shao et al. [36] studied the indoor trip planning queries
(iTPQ) and developed a solution called VIP-tree neighbor expansion that
exploits the features of indoor space, such as room and hallways. Recently,
Feng et al. [12] studied the IKRQ problem, which finds k s-to-t routes with the
highest scores that consider both the keyword relevance and spatial distance.
Each route has a distance satisfying a pre-defined distance constraint. They
defined prime route to return diverse results, and developed two algorithms
for answering the query. All of these works fail to capture different criteria
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at the same time and thus their solutions can not be directly applied to our
problem. Table 7 shows the summary and comparison of all those proposals
and our TIKRQ.

Table 7: Existing Indoor Keyword-aware Routing Queries

Textual Spatial Static Result
Constraint Constraint Cost Diversification

KSR [34] boolean distance - Skyline
CAM [35] boolean distance

√
-

iTPQ [36] boolean distance - -
IKRQ [12] i/t-word distance - Prime route
TIKRQ i/t/c-word time budget

√
Unique partition set

Outdoor Keyword-aware Query and Routing. Some works [3, 9, 10, 31]
studied the outdoor spatial keyword queries that retrieve a single object close
to the query location and relevant to the query keywords, while others [4, 14,
43] find an object set as a solution.

Given a source point s, a target point t, and a category set C, the trip
planning query [17] finds the shortest s-to-t route that passes at least one object
from each category in C. For routing query with visiting order constraint, the
optimal sequenced route query [39] finds the shortest route that passes the
categories in the user-specified sequence, while others [8, 21] consider partial
order. The keyword-aware optimal route query [2] finds a route that covers all
query keywords, has the minimum objective score, and meets the given budget
constraint. The optimal route search [46] finds a route that has maximum query
keywords coverage and satisfies the budget constraint. The route of interest
query [22] also searches a route that has maximum query keywords coverage
and satisfies the budget constraint, but using a different equation to calculate
the coverage. The clue-based route search [48] allows users to specify the order
of keywords to cover and the distance range from one matched keyword to
the next one. All these works fall short for indoor topology considered in our
TIKRQ problem. Also, none of them organize the keywords according to their
semantics.

Session-based Query and Routing. Kanza et al. [15] studied the interac-
tive route search in which the route changes based on the user’s feedback en
route. Later this work was extended [16] to consider an additional complete or
partial ordering requirement. Roy et al. [33] proposed the interactive itinerary
planning problem, which allows users the give feedback on POI selected by the
system. Chen at al. [7] proposed the TripPlanner that iteratively adds user
preferred venues into candidate routes with specified venues. Zheng et al. [49]
proposed interactive top-k spatial keyword queries that utilizes the users’ feed-
back to improves the results of previous round. All these works only consider
part of the parameter changes. Also, none of them work in indoor spaces as in
our TIKRQ problem setting.
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9 Conclusion and Future Work

In this paper, we studied the problem of time-constrained indoor keyword-
aware routing, which find routes with minimum route costs while satisfying a
time constraint. In our setting, the route costs capture both static cost and
textual relevance of the route to meet the practical user needs. We developed a
set-based search algorithm SSA to answer the query. Moreover, we discussed
two variants of TIKRQ, namely preferred visiting order and absence of a target
point. In addition, we studied the session-based TIKRQ and developed algo-
rithms for four cases. Extensive experiments were conducted on both real and
synthetic datasets, which verified the efficiency and sclability of our algorithms.

For future work, we can take the opening hours of partitions and doors
into account. It is also interesting to study the hierarchical word organization
for partitions and to provide suggestions to refine query keywords when no
route is found. Moreover, it is relevant to consider additional constraints like
prohibiting staircases in a route.
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